Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neurobiology of zinc in health and disease

Key Points

  • Long appreciated for its biological activity by the ancients, the zinc ion is now recognized as an important component of biological signalling cascades, with roles in practically every cell and tissue type. The role of zinc in central neuronal function and signalling is increasingly being appreciated. Of particular importance in both function and disease is the synaptic release of zinc from certain neurons by calcium-and impulse-dependent exocytosis. The neurons that release zinc in the mammalian cerebrum are all glutamatergic, and elaboration of the role that these neurons play in cerebral function is currently underway. The modulation of cortical excitability or 'tone' and the modulation of synaptic plasticity are two prominent theories.

  • 'Free' (rapidly exchangeable) Zn2+ is highly toxic. The 'safe' concentration of free zinc in the extracellular fluids of the brain is about 10 nM. Several proteins have been identified that modulate the uptake and export of zinc in all tissues, but only ZnT3 expression is unique to the brain, where it is confined to the synaptic vesicle membranes of a subset of glutamatergic fibres.

  • Zinc has two clear roles in brain injury and brain disease. First, neurons increase their intracellular 'free' zinc by 1,000–10,000-fold after excitotoxic injury (such as stroke). Buffering that free zinc back down to normal levels can rescue affected neurons from apoptotic death. Second, Zn2+, in tandem with oxidative damage, induces the precipitation of amyloid-β into amyloid plaques and congophilic angiopathy, the pathological hallmarks of Alzheimer's disease. Genetic ablation of ZnT3 abolishes amyloid deposition in a transgenic model of Alzheimer's disease.

  • Pharmacological therapies for excitotoxic brain injury and neurodegenerative brain disease based on the concept of buffering the free zinc in the brain (pZn) to the appropriate, physiological concentration (pZn 8) have been shown to be effective in preclinical models and are currently undergoing clinical trials. Some encouraging results have been obtained in both areas, with neuroprotection for stroke and slowed progression of symptoms in Alzheimer's disease.

  • Zinc signalling is also attracting attention outside the brain, where many cell types also secrete zinc. Now that the appropriate tools and techniques for imaging, quantifying and administering zinc are becoming available, research in this field is set to accelerate.

Abstract

The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus1), and zinc has apparently been used fairly steadily throughout Roman2 and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intravital staining of mossy fibres in the rat using the fluorescent probe ZP1.
Figure 2: Synaptic zinc transport.
Figure 3: Zinc release into the extracellular fluid of a hippocampal slice induced by nitric oxide.
Figure 4: Zinc in the amyloid-β plaques of Alzheimer's disease.
Figure 5: Proposed model for pathogenic copper and zinc interaction with amyloid-β in Alzheimer's disease.
Figure 6: Extracellular zinc buffering.
Figure 7: Effect of zinc and copper chelation on amyloid neuropathology in a transgenic mouse model of Alzheimer's disease.

Similar content being viewed by others

References

  1. Arab, S. M. Medicine in Ancient Egypt [online], <http://www.arabworldbooks.com/articles8.htm> (2004).

    Google Scholar 

  2. Rehren, T. Small size, large scale Roman brass production in Germania Inferior. J. Archaeol. Sci. 26, 1083–1087 (1999).

    Google Scholar 

  3. Sandstead, H. H. Causes of iron and zinc deficiencies and their effects on brain. J. Nutr. 130, 347S–349S (2000).

    CAS  PubMed  Google Scholar 

  4. Berg, J. M. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J. Biol. Chem. 265, 6513–6516 (1990).

    CAS  PubMed  Google Scholar 

  5. Lock, K. & Janssen, C. R. Comparative toxicity of a zinc salt, zinc powder and zinc oxide to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Chemosphere 53, 851–856 (2003).

    CAS  PubMed  Google Scholar 

  6. Sensi, S. L., Yin, H. Z. & Weiss, J. H. AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur. J. Neurosci. 12, 3813–3818 (2000).

    CAS  PubMed  Google Scholar 

  7. Weiss, J. H., Sensi, S. L., & Koh, J. Y. Zn2+: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol. Sci. 21, 395–401 (2000).

    CAS  PubMed  Google Scholar 

  8. Sensi, S. L., Ton-That, D. & Weiss, J. H. Mitochondrial sequestration and Ca2+-dependent release of cytosolic Zn2+ loads in cortical neurons. Neurobiol. Dis. 10, 100–108 (2002).

    CAS  PubMed  Google Scholar 

  9. Haase, H. & Maret, W. Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp. Cell Res. 291, 289–298 (2003).

    CAS  PubMed  Google Scholar 

  10. Maret, W., Yetman, C. A. & Jiang, L. Enzyme regulation by reversible zinc inhibition: glycerol phosphate dehydrogenase as an example. Chem. Biol. Interact. 130–132, 891–901 (2001). Reveals the role of thionein as a zinc-shuttle that carries zinc signals to specific proteins.

    PubMed  Google Scholar 

  11. Maret, W., Jacob, C., Vallee, B. L. & Fischer, E. H. Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc. Natl Acad. Sci. USA 96, 1936–1940 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, D. W. & Koh, J. Y. Zinc and brain injury. Annu. Rev. Neurosci. 21, 347–375 (1998).

    CAS  PubMed  Google Scholar 

  13. Frederickson, C. J. Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 31, 145–238 (1989).

    CAS  PubMed  Google Scholar 

  14. Frederickson, C. J. & Bush, A. I. Synaptically released zinc: physiological functions and pathological effects. Biometals 14, 353–366 (2001).

    CAS  PubMed  Google Scholar 

  15. Slomianka, L., Danscher, G. & Frederickson, C. J. Labeling of the neurons of origin of zinc-containing pathways by intraperitoneal injections of sodium selenite. Neuroscience 38, 843–854 (1990).

    CAS  PubMed  Google Scholar 

  16. Maske, H. A new method for demonstrating A and B cells in the islands of Langerhans. (Translation) Klin. Wochenschr. 33, 1058 (1955).

    CAS  Google Scholar 

  17. Smart, T. G., Xie, X. & Krishek, B. J. Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog. Neurobiol. 42, 393–341 (1994).

    CAS  PubMed  Google Scholar 

  18. Li, Y., Hough, C. J., Frederickson, C. J. & Sarvey, J. M. Induction of mossy fiber→Ca3 long-term potentiation requires translocation of synaptically released Zn2+. J. Neurosci. 21, 8015–8025 (2001). Shows that the translocation of zinc from presynaptic terminals into postsynaptic neurons has a role in physiological signalling — in LTP.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown, C. E. & Dyck, R. H. Rapid, experience-dependent changes in levels of synaptic zinc in primary somatosensory cortex of the adult mouse. J. Neurosci. 22, 2617–2625 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Garrett, B. & Slomianka, L. Postnatal development of zinc-containing cells and neuropil in the visual cortex of the mouse. Anat. Embryol. (Berl.) 186, 487–496 (1992).

    CAS  Google Scholar 

  21. Casanovas-Aguilar, C., Miro-Bernie, N. & Perez-Clausell, J. Zinc-rich neurones in the rat visual cortex give rise to two laminar segregated systems of connections. Neuroscience 110, 445–458 (2002).

    CAS  PubMed  Google Scholar 

  22. Casanovas-Aguilar, C., Reblet, C., Perez-Clausell, J. & Bueno-Lopez, J. L. Zinc-rich afferents to the rat neocortex: projections to the visual cortex traced with intracerebral selenite injections. J. Chem. Neuroanat. 15, 97–109 (1998).

    CAS  PubMed  Google Scholar 

  23. Casanovas-Aguilar, C. et al. Callosal neurones give rise to zinc-rich boutons in the rat visual cortex. Neuroreport 6, 497–500 (1995).

    CAS  PubMed  Google Scholar 

  24. Frederickson, C. J. & Moncrieff, D. W. Zinc-containing neurons. Biol. Signals 3, 127–139 (1994).

    CAS  PubMed  Google Scholar 

  25. Danscher, G., Howell, G., Perez-Clausell, J. & Hertel, N. The dithizone, Timm's sulphide silver and the selenium methods demonstrate a chelatable pool of zinc in CNS. A proton activation (PIXE) analysis of carbon tetrachloride extracts from rat brains and spinal cords intravitally treated with dithizone. Histochemistry 83, 419–422 (1985).

    CAS  PubMed  Google Scholar 

  26. Frederickson, C. J., Rampy, B. A., Reamy-Rampy, S. & Howell, G. A. Distribution of histochemically reactive zinc in the forebrain of the rat. J. Chem. Neuroanat. 5, 521–530 (1992).

    CAS  PubMed  Google Scholar 

  27. Sindreu, C. B., Varoqui, H., Erickson, J. D. & Perez-Clausell, J. Boutons containing vesicular zinc define a subpopulation of synapses with low AMPAR content in rat hippocampus. Cereb. Cortex 13, 823–829 (2003). Shows that almost half of synapses on some cortical dendrites are glutamate and zinc releasing, and that these are preferentially located at NMDA receptor-loaded spines.

    PubMed  Google Scholar 

  28. Haug, F. M., Blackstad, T. W., Simonsen, A. H. & Zimmer, J. Timm's sulfide silver reaction for zinc during experimental anterograde degeneration of hippocampal mossy fibers. J. Comp. Neurol. 142, 23–31 (1971).

    CAS  PubMed  Google Scholar 

  29. Sloviter, R. S. A selective loss of hippocampal mossy fiber Timm stain accompanies granule cell seizure activity induced by perforant path stimulation. Brain Res. 330, 150–153 (1985).

    CAS  PubMed  Google Scholar 

  30. Frederickson, C. J., Hernandez, M. D., Goik, S. A., Morton, J. D. & McGinty, J. F. Loss of zinc staining from hippocampal mossy fibers during kainic acid induced seizures: a histofluorescence study. Brain Res. 446, 383–386 (1988).

    CAS  PubMed  Google Scholar 

  31. Riba-Bosch, A. & Perez-Clausell, J. Response to kainic acid injections: changes in staining for zinc, FOS, cell death and glial response in the rat forebrain. Neuroscience 125, 803–818 (2004).

    CAS  PubMed  Google Scholar 

  32. Sorensen, J. C., Mattsson, B., Andreasen, A. & Johansson, B. B. Rapid disappearance of zinc positive terminals in focal brain ischemia. Brain Res. 812, 265–269 (1998).

    CAS  PubMed  Google Scholar 

  33. Suh, S. W. et al. Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res. 852, 268–273 (2000).

    CAS  PubMed  Google Scholar 

  34. Budde, T., Minta, A., White, J. A. & Kay, A. R. Imaging free zinc in synaptic terminals in live hippocampal slices. Neuroscience 79, 347–358 (1997).

    CAS  PubMed  Google Scholar 

  35. Varea, E., Ponsoda, X., Molowny, A., Danscher, G. & Lopez-Garcia, C. Imaging synaptic zinc release in living nervous tissue. J. Neurosci. Methods 110, 57–63 (2001).

    CAS  PubMed  Google Scholar 

  36. Perez-Clausell, J. & Danscher, G. Release of zinc sulphide accumulations into synaptic clefts after in vivo injection of sodium sulphide. Brain Res. 362, 358–361 (1986).

    CAS  PubMed  Google Scholar 

  37. Quinta-Ferreira, M. E. & Matias, C. M. Hippocampal mossy fiber calcium transients are maintained during long-term potentiation and are inhibited by endogenous zinc. Brain Res. 1004, 52–60 (2004).

    CAS  PubMed  Google Scholar 

  38. Assaf, S. Y. & Chung, S. H. Release of endogenous Zn2+ from brain tissue during activity. Nature 308, 734–736 (1984).

    CAS  PubMed  Google Scholar 

  39. Howell, G. A., Welch, M. G. & Frederickson, C. J. Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308, 736–738 (1984). The discovery that zinc is released in a calcium- and impulse-dependent manner from central neurons.

    CAS  PubMed  Google Scholar 

  40. Aniksztejn, L., Charton, G. & Ben Ari, Y. Selective release of endogenous zinc from the hippocampal mossy fibers in situ. Brain Res. 404, 58–64 (1987).

    CAS  PubMed  Google Scholar 

  41. Charton, G., Rovira, C., Ben Ari, Y. & Leviel, V. Spontaneous and evoked release of endogenous Zn2+ in the hippocampal mossy fiber zone of the rat in situ. Exp. Brain Res. 58, 202–205 (1985).

    CAS  PubMed  Google Scholar 

  42. Takeda, A., Sawashita, J., Takefuta, S., Ohnuma, M. & Okada, S. Role of zinc released by stimulation in rat amygdala. J. Neurosci. Res. 57, 405–410 (1999).

    CAS  PubMed  Google Scholar 

  43. Zornow, M. et al. Zinc and glutamate signaling during ischemia and reperfusion. Neuroscience (in the press).

  44. Thompson, R. B., Whetsell, W. O. Jr, Maliwal, B. P., Fierke, C. A. & Frederickson, C. J. Fluorescence microscopy of stimulated Zn(II) release from organotypic cultures of mammalian hippocampus using a carbonic anhydrase-based biosensor system. J. Neurosci. Methods 96, 35–45 (2000).

    CAS  PubMed  Google Scholar 

  45. Li, Y., Hough, C. J., Suh, S. W., Sarvey, J. M. & Frederickson, C. J. Rapid translocation of Zn2+ from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J. Neurophysiol. 86, 2597–2604 (2001).

    CAS  PubMed  Google Scholar 

  46. Ueno, S. et al. Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-D-aspartate receptor activity in hippocampal CA3 circuits. J. Cell Biol. 158, 215–220 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Altman, J., Brunner, R. L. & Bayer, S. A. The hippocampus and behavioral maturation. Behav. Biol. 8, 557–596 (1973).

    CAS  PubMed  Google Scholar 

  48. Bayer, S. A. & Altman, J. Hippocampal development in the rat: cytogenesis and morphogenesis examined with autoradiography and low-level X-irradiation. J. Comp. Neurol. 158, 55–79 (1974).

    CAS  PubMed  Google Scholar 

  49. Frederickson, C. J., Howell, G. A. & Frederickson, M. H. Zinc dithizonate staining in the cat hippocampus: relationship to the mossy-fiber neuropil and postnatal development. Exp. Neurol. 73, 812–823 (1981).

    CAS  PubMed  Google Scholar 

  50. Kay, A. R. Evidence for chelatable zinc in the extracellular space of the hippocampus, but little evidence for synaptic release of Zn. J. Neurosci. 23, 6847–6855 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sheline, C. T., Ying, H. S., Ling, C. S., Canzoniero, L. M. & Choi, D. W. Depolarization-induced 65zinc influx into cultured cortical neurons. Neurobiol. Dis. 10, 41–53 (2002).

    CAS  PubMed  Google Scholar 

  52. Benters, J. et al. Study of the interactions of cadmium and zinc ions with cellular calcium homoeostasis using 19F-NMR spectroscopy. Biochem. J. 322, 793–799 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Marin, P., Israel, M., Glowinski, J. & Premont, J. Routes of zinc entry in mouse cortical neurons: role in zinc-induced neurotoxicity. Eur. J. Neurosci. 12, 8–18 (2000).

    CAS  PubMed  Google Scholar 

  54. Thompson, R. B., Maliwal, B. P. & Zeng, H. H. Zinc biosensing with multiphoton excitation using carbonic anhydrase and improved fluorophores. J. Biomed. Opt. 5, 17–22 (2000).

    CAS  PubMed  Google Scholar 

  55. Jia, Y., Jeng, J. M., Sensi, S. L. & Weiss, J. H. Zn2+ currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurones. J. Physiol. (Lond.) 543, 35–48 (2002).

    CAS  Google Scholar 

  56. Sensi, S. L. et al. Measurement of intracellular free zinc in living cortical neurons: routes of entry. J. Neurosci. 17, 9554–9564 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Atar, D., Backx, P. H., Appel, M. M., Gao, W. D. & Marban, E. Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J. Biol. Chem. 270, 2473–2477 (1995).

    CAS  PubMed  Google Scholar 

  58. Kerchner, G. A., Canzoniero, L. M., Yu, S. P., Ling, C. & Choi, D. W. Zn2+ current is mediated by voltage-gated Ca2+ channels and enhanced by extracellular acidity in mouse cortical neurones. J. Physiol. (Lond.) 528, 39–52 (2000).

    CAS  Google Scholar 

  59. Yin, H. Z., Ha, D. H., Carriedo, S. G. & Weiss, J. H. Kainate-stimulated Zn2+ uptake labels cortical neurons with Ca2+-permeable AMPA/kainate channels. Brain Res. 781, 45–55 (1998).

    CAS  PubMed  Google Scholar 

  60. Maret, W. The function of zinc metallothionein: a link between cellular zinc and redox state. J. Nutr. 130, 1455S–1458S (2000).

    CAS  PubMed  Google Scholar 

  61. Maret, W. Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange. Proc. Natl Acad. Sci. USA 91, 237–241 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Vallee, B. L. The function of metallothionein. Neurochem. Int. 27, 23–33 (1995).

    CAS  PubMed  Google Scholar 

  63. Maret, W. & Vallee, B. L. Thiolate ligands in metallothioneins confer redox activity on zinc clusters. Proc. Natl Acad. Sci. USA 95, 3478–3482 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Maret, W. The function of zinc metallothionein: a link between cellular zinc and redox state. J. Nutr. 130 (5S Suppl.), 145S–148S (2000).

    Google Scholar 

  65. Jacob, C., Maret, W. & Vallee, B. L. Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc. Natl Acad. Sci. USA 95, 3489–3494 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Uchida, Y., Taiko, K., Titani, K. I. Y. & Tomonaga, M. The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 aminoacid metallothionein-like protein. Neuron 7, 337–347 (1991).

    CAS  PubMed  Google Scholar 

  67. Palmiter, R. D., Findley, S. D., Whitmore, T. E. & Durnam, D. M. MT-III, a brain-specific member of the metallothionein gene family. Proc. Natl Acad. Sci. USA 89, 6333–6337 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, J. Y., Kim, J. H., Palmiter, R. D. & Koh, J. Y. Zinc released from metallothionein-III may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp. Neurol. 184, 337–347 (2003).

    CAS  PubMed  Google Scholar 

  69. Frederickson, C. J., Maret, W. & Cuajungco, M. P. Zinc and excitotoxic brain injury: a new model. Neuroscientist 10, 18–25 (2004).

    CAS  PubMed  Google Scholar 

  70. Sensi, S. L., Yin, H. Z., Carriedo, S. G., Rao, S. S. & Weiss, J. H. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc. Natl Acad. Sci. USA 96, 2414–2419 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Weiss, J. H. & Sensi, S. L. Ca2+-Zn2+ permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci. 23, 365–371 (2000).

    CAS  PubMed  Google Scholar 

  72. Colvin, R. A., Davis, N., Nipper, R. W. & Carter, P. A. Zinc transport in the brain: routes of zinc influx and efflux in neurons. J. Nutr. 130, 1484S–1487S (2000).

    CAS  PubMed  Google Scholar 

  73. Colvin, R. A., Davis, N., Nipper, R. W. & Carter, P. A. Evidence for a zinc/proton antiporter in rat brain. Neurochem. Int. 36, 539–547 (2000).

    CAS  PubMed  Google Scholar 

  74. Wei, G., Hough, C. J., Li, Y. & Sarvey, J. M. Characterization of extracellular accumulation of Zn2+ during ischemia and reperfusion of hippocampus slices in rat. Neuroscience 125, 867–877 (2004).

    CAS  PubMed  Google Scholar 

  75. Frederickson, C. J., Maret, W. & Cuajungco, M. P. Zinc and excitotoxic brain injury: a new model. Neuroscientist 10, 18–25 (2004).

    CAS  PubMed  Google Scholar 

  76. Bossy-Wetzel, E. et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41, 351–365 (2004).

    CAS  PubMed  Google Scholar 

  77. Aizenman, E. et al. Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J. Neurochem. 75, 1878–1888 (2000). Introduces the notion of thiol-liberated free zinc as a generic apoptosis death signal.

    CAS  PubMed  Google Scholar 

  78. Rameau, G. A., Chiu, L. Y. & Ziff, E. B. NMDA receptor regulation of nNOS phosphorylation and induction of neuron death. Neurobiol. Aging 24, 1123–1133 (2003).

    CAS  PubMed  Google Scholar 

  79. Rameau, G. A., Chiu, L. Y. & Ziff, E. B. Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor. J. Biol. Chem. 279, 14307–14314 (2004).

    CAS  PubMed  Google Scholar 

  80. Colvin, R. A., Fontaine, C. P., Laskowski, M. & Thomas, D. Zn2+ transporters and Zn2+ homeostasis in neurons. Eur. J. Pharmacol. 479, 171–185 (2003).

    CAS  PubMed  Google Scholar 

  81. Palmiter, R. D., Cole, T. B., Quaife, C. J. & Findley, S. D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl Acad. Sci. USA 93, 14934–14939 (1996). The first evidence to indicate that the ZnT3 protein is necessary for zinc accumulation in neuronal vesicles.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Segal, D. et al. A role for ZnT-1 in regulating cellular cation influx. Biochem. Biophys. Res. Commun. 323, 1145–1150 (2004).

    CAS  PubMed  Google Scholar 

  83. Thompson, R., Frederickson, C., Fierke, C. & Bector, G. in Practical Aspects of Fluorescence Sensing in Biology. (ed. Thompson, R.) (CRC, Florida, in the press).

  84. Paoletti, P., Ascher, P. & Neyton, J. High-affinity zinc inhibition of NMDA NR1–NR2A receptors. J. Neurosci. 17, 5711–5725 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Patton, C., Thompson, S. & Epel, D. Some precautions in using chelators to buffer metals in biological solutions. Cell Calcium 35, 427–431 (2004).

    CAS  PubMed  Google Scholar 

  86. Aslamkhan, A. G., Aslamkhan, A. & Ahearn, G. A. Preparation of metal ion buffers for biological experimentation: a methods approach with emphasis on iron and zinc. J. Exp. Zool. 292, 507–522 (2002).

    CAS  PubMed  Google Scholar 

  87. Thompson, R. B. et al. Fluorescent zinc indicators for neurobiology. J. Neurosci. Methods 118, 63–75 (2002).

    CAS  PubMed  Google Scholar 

  88. Peters, S., Koh, J. & Choi, D. W. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science 236, 589–593 (1987).

    CAS  PubMed  Google Scholar 

  89. Low, C. M., Zheng, F., Lyuboslavsky, P. & Traynelis, S. F. Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors. Proc. Natl Acad. Sci. USA 97, 11062–11067 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Coughenour, L. L. & Barr, B. M. Use of trifluoroperazine isolates a [3H]ifenprodil binding site in rat brain membranes with the pharmacology of the voltage-independent ifenprodil site on N-methyl-D-aspartate receptors containing NR2B subunits. J. Pharmacol. Exp. Ther. 296, 150–159 (2001).

    CAS  PubMed  Google Scholar 

  91. Martin, D., Ault, B. & Nadler, J. V. NMDA receptor-mediated depolarizing action of proline on CA1 pyramidal cells. Eur. J. Pharmacol. 219, 59–66 (1992).

    CAS  PubMed  Google Scholar 

  92. Vogt, K., Mellor, J., Tong, G. & Nicoll, R. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26, 187–196 (2000).

    CAS  PubMed  Google Scholar 

  93. Mitchell, C. L. & Barnes, M. I. Proconvulsant action of diethyldithiocarbamate in stimulation of the perforant path. Neurotoxicol. Teratol. 15, 165–171 (1993).

    CAS  PubMed  Google Scholar 

  94. Mitchell, C. L., Barnes, M. I. & Grimes, L. M. Diethyldithiocarbamate and dithizone augment the toxicity of kainic acid. Brain Res. 506, 327–330 (1990).

    CAS  PubMed  Google Scholar 

  95. Dominguez, M. I., Blasco-Ibanez, J. M., Crespo, C., Marques-Mari, A. I. & Martinez-Guijarro, F. J. Calretinin/PSA-NCAM immunoreactive granule cells after hippocampal damage produced by kainic acid and DEDTC treatment in mouse. Brain Res. 966, 206–217 (2003).

    CAS  PubMed  Google Scholar 

  96. Dominguez, M. I., Blasco-Ibanez, J. M., Crespo, C., Marques-Mari, A. I. & Martinez-Guijarro, F. J. Zinc chelation during non-lesioning overexcitation results in neuronal death in the mouse hippocampus. Neuroscience 116, 791–806 (2003).

    CAS  PubMed  Google Scholar 

  97. Lin, D. D., Cohen, A. S. & Coulter, D. A. Zinc-induced augmentation of excitatory synaptic currents and glutamate receptor responses in hippocampal CA3 neurons. J. Neurophysiol. 85, 1185–1196 (2001).

    CAS  PubMed  Google Scholar 

  98. Manzerra, P. et al. Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc. Natl Acad. Sci. USA 98, 11055–11061 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim, T. Y., Hwang, J. J., Yun, S. H., Jung, M. W. & Koh, J. Y. Augmentation by zinc of NMDA receptor-mediated synaptic responses in CA1 of rat hippocampal slices: mediation by Src family tyrosine kinases. Synapse 46, 49–56 (2002).

    CAS  PubMed  Google Scholar 

  100. Westbrook, G. L. & Mayer, M. L. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328, 640–643 (1987).

    CAS  PubMed  Google Scholar 

  101. Smart, T. G. & Constanti, A. Pre- and postsynaptic effects of zinc on in vitro prepyriform neurones. Neurosci. Lett. 40, 205–211 (1983).

    CAS  PubMed  Google Scholar 

  102. Horning, M. S. & Trombley, P. Q. Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms. J. Neurophysiol. 86, 1652–1660 (2001).

    CAS  PubMed  Google Scholar 

  103. Legendre, P. & Westbrook, G. L. Noncompetitive inhibition of γ-aminobutyric acidA channels by Zn. Mol. Pharmacol. 39, 267–274 (1991).

    CAS  PubMed  Google Scholar 

  104. Ben Ari, Y. & Cherubini, E. Zinc and GABA in developing brain. Nature 353, 220 (1991).

    CAS  PubMed  Google Scholar 

  105. Hosie, A. M., Dunne, E. L., Harvey, R. J. & Smart, T. G. Zinc-mediated inhibition of GABAA receptors: discrete binding sites underlie subtype specificity. Nature Neurosci. 6, 362–369 (2003).

    CAS  PubMed  Google Scholar 

  106. Xie, X. M. & Smart, T. G. A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature 349, 521–524 (1991).

    CAS  PubMed  Google Scholar 

  107. Ruiz, A., Walker, M. C., Fabian-Fine, R. & Kullmann, D. M. Endogenous zinc inhibits GABAA receptors in a hippocampal pathway. J. Neurophysiol. 91, 1091–1096 (2004).

    CAS  PubMed  Google Scholar 

  108. Xie, X., Hider, R. C. & Smart, T. G. Modulation of GABA-mediated synaptic transmission by endogenous zinc in the immature rat hippocampus in vitro. J. Physiol. (Lond.) 478, 75–86 (1994).

    CAS  Google Scholar 

  109. Wang, Z., Li, J. Y., Dahlstrom, A. & Danscher, G. Zinc-enriched GABAergic terminals in mouse spinal cord. Brain Res. 921, 165–172 (2001).

    CAS  PubMed  Google Scholar 

  110. Buhl, E. H., Otis, T. S. & Mody, I. Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 271, 369–373 (1996).

    CAS  PubMed  Google Scholar 

  111. Coulter, D. A. Epilepsy-associated plasticity in γ-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int. Rev. Neurobiol. 45, 237–252 (2001).

    CAS  PubMed  Google Scholar 

  112. Shumate, M. D., Lin, D. D., Gibbs, J. W., Holloway, K. L. & Coulter, D. A. GABAA receptor function in epileptic human dentate granule cells: comparison to epileptic and control rat. Epilepsy Res. 32, 114–128 (1998).

    CAS  PubMed  Google Scholar 

  113. Molnar, P. & Nadler, J. V. Lack of effect of mossy fiber-released zinc on granule cell GABAA receptors in the pilocarpine model of epilepsy. J. Neurophysiol. 85, 1932–1940 (2001).

    CAS  PubMed  Google Scholar 

  114. Kapur, J. & MacDonald, R. L. Rapid seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABAA receptors. J. Neurosci. 17, 7532–7540 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Brooks-Kayal, A. R. et al. γ-Aminobutyric acidA receptor subunit expression predicts functional changes in hippocampal dentate granule cells during postnatal development. J. Neurochem. 77, 1266–1278 (2001).

    CAS  PubMed  Google Scholar 

  116. Kretschmannova, K., Svobodova, I. & Zemkova, H. Day-night variations in zinc sensitivity of GABAA receptor-channels in rat suprachiasmatic nucleus. Brain Res. Mol. Brain Res. 120, 46–51 (2003).

    CAS  PubMed  Google Scholar 

  117. Schetz, J. A., Chu, A. & Sibley, D. R. Zinc modulates antagonist interactions with D2-like dopamine receptors through distinct molecular mechanisms. J. Pharmacol. Exp. Ther. 289, 956–964 (1999).

    CAS  PubMed  Google Scholar 

  118. Schetz, J. A. & Sibley, D. R. Zinc allosterically modulates antagonist binding to cloned D1 and D2 dopamine receptors. J. Neurochem. 68, 1990–1997 (1997).

    CAS  PubMed  Google Scholar 

  119. Uki, M. & Narahashi, T. Modulation of serotonin-induced currents by metals in mouse neuroblastoma cells. Arch. Toxicol. 70, 652–660 (1996).

    CAS  PubMed  Google Scholar 

  120. Swaminath, G., Steenhuis, J., Kobilka, B. & Lee, T. W. Allosteric modulation of β2-adrenergic receptor by Zn2+. Mol. Pharmacol. 61, 65–72 (2002).

    CAS  PubMed  Google Scholar 

  121. Rosati, A. M. & Traversa, U. Mechanisms of inhibitory effects of zinc and cadmium ions on agonist binding to adenosine A1 receptors in rat brain. Biochem. Pharmacol. 58, 623–632 (1999).

    CAS  PubMed  Google Scholar 

  122. Traversa, U. & Rosati, A. Zinc and cadmium ions differently modulate A1 adenosine receptors. Acta Physiol. Hung. 84, 465–467 (1996).

    CAS  PubMed  Google Scholar 

  123. Palma, E., Maggi, L., Miledi, R. & Eusebi, F. Effects of Zn2+ on wild and mutant neuronal α7 nicotinic receptors. Proc. Natl Acad. Sci. USA 95, 10246–10250 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Garcia-Colunga, J., Gonzalez-Herrera, M. & Miledi, R. Modulation of α2β4 neuronal nicotinic acetylcholine receptors by zinc. Neuroreport 12, 147–150 (2001).

    CAS  PubMed  Google Scholar 

  125. Chattipakorn, S. C. & McMahon, L. L. Pharmacological characterization of glycine-gated chloride currents recorded in rat hippocampal slices. J. Neurophysiol. 87, 1515–1525 (2002).

    CAS  PubMed  Google Scholar 

  126. Baron, A., Schaefer, L., Lingueglia, E., Champigny, G. & Lazdunski, M. Zn2+ and H+ are coactivators of acid-sensing ion channels. J. Biol. Chem. 276, 35361–35367 (2001).

    CAS  PubMed  Google Scholar 

  127. Baron, A., Waldmann, R. & Lazdunski, M. ASIC-like, proton-activated currents in rat hippocampal neurons. J. Physiol. (Lond.) 539, 485–494 (2002).

    CAS  Google Scholar 

  128. Birinyi, A., Parker, D., Antal, M. & Shupliakov, O. Zinc co-localizes with GABA and glycine in synapses in the lamprey spinal cord. J. Comp. Neurol. 433, 208–221 (2001).

    CAS  PubMed  Google Scholar 

  129. Laube, B. et al. Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors. J. Physiol. (Lond.) 483, 613–619 (1995).

    CAS  Google Scholar 

  130. Quest, A. F., Bloomenthal, J., Bardes, E. S. & Bell, R. M. The regulatory domain of protein kinase C coordinates four atoms of zinc. J. Biol. Chem. 267, 10193–10197 (1992).

    CAS  PubMed  Google Scholar 

  131. Bloomenthal, A. B., Goldwater, E., Pritchett, D. B. & Harrison, N. L. Biphasic modulation of the strychnine-sensitive glycine receptor by Zn2+. Mol. Pharmacol. 46, 1156–1159 (1994).

    CAS  PubMed  Google Scholar 

  132. Choi, D. W. Zinc neurotoxicity may contribute to selective neuronal death following transient global cerebral ischemia. Cold Spring Harb. Symp. Quant. Biol. 61, 385–387 (1996).

    CAS  PubMed  Google Scholar 

  133. Choi, D. W. Possible mechanisms limiting N-methyl-D-aspartate receptor overactivation and the therapeutic efficacy of N-methyl-D-aspartate antagonists. Stroke 21, III20–III22 (1990).

    CAS  PubMed  Google Scholar 

  134. Hershfinkel, M., Moran, A., Grossman, N. & Sekler, I. A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc. Natl Acad. Sci. USA 98, 11749–11754 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Vandenberg, R. J., Mitrovic, A. D. & Johnston, G. A. Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions. Mol. Pharmacol. 54, 189–196 (1998).

    CAS  PubMed  Google Scholar 

  136. Richfield, E. K. Zinc modulation of drug binding, cocaine affinity states, and dopamine uptake on the dopamine uptake complex. Mol. Pharmacol. 43, 100–108 (1993).

    CAS  PubMed  Google Scholar 

  137. Itoh, M. & Ebadi, M. The selective inhibition of hippocampal glutamic acid decarboxylase in zinc-induced epileptic seizures. Neurochem. Res. 7, 1287–1298 (1982).

    CAS  PubMed  Google Scholar 

  138. Morton, J. D., Howell, G. A. & Frederickson, C. J. Effects of subcutaneous injections of zinc chloride on seizures induced by noise and by kainic acid. Epilepsia 31, 139–144 (1990).

    CAS  PubMed  Google Scholar 

  139. Xie, X. & Smart, T. G. Modulation of long-term potentiation in rat hippocampal pyramidal neurons by zinc. Pflugers Arch. 427, 481–486 (1994).

    CAS  PubMed  Google Scholar 

  140. Weiss, J. H., Koh, J. Y., Christine, C. W. & Choi, D. W. Zinc and LTP. Nature 338, 212 (1989).

    CAS  PubMed  Google Scholar 

  141. Vincent, S. R. & Semba, K. A heavy metal marker of the developing striatal mosaic. Brain Res. Dev. Brain Res. 45, 155–159 (1989).

    CAS  PubMed  Google Scholar 

  142. Land, P. W. & Shamalla-Hannah, L. Transient expression of synaptic zinc during development of uncrossed retinogeniculate projections. J. Comp. Neurol. 433, 515–525 (2001).

    CAS  PubMed  Google Scholar 

  143. Dyck, R., Beaulieu, C. & Cynader, M. Histochemical localization of synaptic zinc in the developing cat visual cortex. J. Comp. Neurol. 329, 53–67 (1993).

    CAS  PubMed  Google Scholar 

  144. Lu, Y. M. et al. Endogenous Zn2+ is required for the induction of long-term potentiation at rat hippocampal mossy fiber-CA3 synapses. Synapse 38, 187–197 (2000).

    CAS  PubMed  Google Scholar 

  145. Murphy, J. V. Intoxication following ingestion of elemental zinc. JAMA 212, 2119–2120 (1970).

    CAS  PubMed  Google Scholar 

  146. Yokoyama, M., Koh, J. & Choi, D. W. Brief exposure to zinc is toxic to cortical neurons. Neurosci. Lett. 71, 351–355 (1986).

    CAS  PubMed  Google Scholar 

  147. Frederickson, C. J., Klitenick, M. A., Manton, W. I. & Kirkpatrick, J. B. Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Res. 273, 335–339 (1983).

    CAS  PubMed  Google Scholar 

  148. Siesjo, B. K. Basic mechanisms of traumatic brain damage. Ann. Emerg. Med. 22, 959–969 (1993).

    CAS  PubMed  Google Scholar 

  149. Hossmann, K. A. Periinfarct depolarizations. Cerebrovasc. Brain Metab. Rev. 8, 195–208 (1996).

    CAS  PubMed  Google Scholar 

  150. Weiss, J. H., Hartley, D. M., Koh, J. Y. & Choi, D. W. AMPA receptor activation potentiates zinc neurotoxicity. Neuron 10, 43–49 (1993).

    CAS  PubMed  Google Scholar 

  151. Koh, J. Y. & Choi, D. W. Zinc toxicity on cultured cortical neurons: involvement of N-methyl-D-aspartate receptors. Neuroscience 60, 1049–1057 (1994).

    CAS  PubMed  Google Scholar 

  152. Kolenko, V. M. et al. Mechanism of apoptosis induced by zinc deficiency in peripheral blood T lymphocytes. Apoptosis 6, 419–429 (2001).

    CAS  PubMed  Google Scholar 

  153. Canzoniero, L. M., Turetsky, D. M. & Choi, D. W. Measurement of intracellular free zinc concentrations accompanying zinc-induced neuronal death. J. Neurosci. 19, RC31 (1999).

  154. Frederickson, C. J., Hernandez, M. D. & McGinty, J. F. Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res. 480, 317–321 (1989). The discovery that zinc accumulates in neurons injured by excitotoxicity.

    CAS  PubMed  Google Scholar 

  155. Tonder, N., Johansen, F. F., Frederickson, C. J., Zimmer, J. & Diemer, N. H. Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci. Lett. 109, 247–252 (1990).

    CAS  PubMed  Google Scholar 

  156. Koh, J. Y. et al. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272, 1013–1016 (1996). The first demonstation that chelation of metals can rescue neurons from ischaemic injury and death.

    CAS  PubMed  Google Scholar 

  157. Lee, J. M. et al. Zinc translocation accelerates infarction after mild transient focal ischemia. Neuroscience 115, 871–878 (2002).

    CAS  PubMed  Google Scholar 

  158. Yin, H. Z., Sensi, S. L., Ogoshi, F. & Weiss, J. H. Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramid neurons. J. Neurosci. 22, 1273–1279 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Suh, S. W., Garnier, P., Aoyama, K., Chen, Y. & Swanson, R. A. Zinc release contributes to hypoglycemia-induced neuronal death. Neurobiol. Dis. 16, 538–545 (2004).

    CAS  PubMed  Google Scholar 

  160. Lee, J. Y., Cole, T. B., Palmiter, R. D. & Koh, J. Y. Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J. Neurosci. 20, RC79 (2000). The first study to show that zinc accumulation in injured neurons is independent of synpatic vesicle zinc.

  161. Frederickson, C. J. et al. Depletion of intracellular zinc from neurons by use of an extracellular chelator in vivo and in vitro. J. Histochem. Cytochem. 50, 1659–1662 (2002).

    CAS  PubMed  Google Scholar 

  162. Sunderman, F. W. Jr. The influence of zinc on apoptosis. Ann. Clin. Lab. Sci. 25, 134–142 (1995).

    CAS  PubMed  Google Scholar 

  163. Kim, E. Y. et al. Zn2+ entry produces oxidative neuronal necrosis in cortical cell cultures. Eur. J. Neurosci. 11, 327–334 (1999).

    CAS  PubMed  Google Scholar 

  164. Sensi, S. L., Yin, H. Z. & Weiss, J. H. Glutamate triggers preferential Zn2+ flux through Ca2+ permeable AMPA channels and consequent ROS production. Neuroreport 10, 1723–1727 (1999). Showed that calcium permeable AMPA/Kainate channels are the main route of zinc entry to postsynaptic neurons. Also links zinc and oxidative stress.

    CAS  PubMed  Google Scholar 

  165. Noh, K. M., Kim, Y. H. & Koh, J. Y. Mediation by membrane protein kinase C of zinc-induced oxidative neuronal injury in mouse cortical cultures. J. Neurochem. 72, 1609–1616 (1999).

    CAS  PubMed  Google Scholar 

  166. Kim, Y. H., Kim, E. Y., Gwag, B. J., Sohn, S. & Koh, J. Y. Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals. Neuroscience 89, 175–182 (1999).

    CAS  PubMed  Google Scholar 

  167. Seo, S. R. et al. Zn2+-induced ERK activation mediated by reactive oxygen species cause cell death in differentiated PC12 cells. J. Neurochem. 78, 600–610 (2001).

    CAS  PubMed  Google Scholar 

  168. Noh, K. M. & Koh, J. Y. Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J. Neurosci. 20, RC111 (2000). NADPH oxidase might be one of the effectors of zinc-induced oxidative stress.

  169. Lobner, D. et al. Zinc-induced neuronal death in cortical neurons. Cell Mol. Biol. (Noisy-le-grand) 46, 797–806 (2000).

    CAS  Google Scholar 

  170. Park, J. A., Lee, J. Y., Sato, T. A. & Koh, J. Y. Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat. J. Neurosci. 20, 9096–9103 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Mukai, J. et al. NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR. J. Biol. Chem. 275, 17566–17570 (2000).

    CAS  PubMed  Google Scholar 

  172. Jiang, D., Sullivan, P. G., Sensi, S. L., Steward, O. & Weiss, J. H. Zn2+ induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J. Biol. Chem. 276, 47524–47529 (2001).

    CAS  PubMed  Google Scholar 

  173. Yi, J. S., Lee, S. K., Sato, T. A. & Koh, J. Y. Co-induction of p75NTRand the associated death executor NADE in degenerating hippocampal neurons after kainate-induced seizures in the rat. Neurosci. Lett. 347, 126–130 (2003).

    CAS  PubMed  Google Scholar 

  174. Yang, Y., Maret, W. & Vallee, B. L. Differential fluorescence labeling of cysteinyl clusters uncovers high tissue levels of thionein. Proc. Natl Acad. Sci. USA 98, 5556–5559 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Frederickson, C. J., Cuajungco, M. P., LaBuda, C. J. & Suh, S. W. Nitric oxide causes apparent release of zinc from presynaptic boutons. Neuroscience 115, 471–474 (2002).

    CAS  PubMed  Google Scholar 

  176. Kim, Y. H. & Koh, J. Y. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly (ADP-ribose) polymerase activation and cell death in cortical culture. Exp. Neurol. 177, 407–418 (2002).

    CAS  PubMed  Google Scholar 

  177. Ha, H. C. & Snyder, S. H. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc. Natl Acad. Sci. USA 96, 13978–13982 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Szabo, C. & Dawson, V. L. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol. Sci. 19, 287–298 (1998).

    CAS  PubMed  Google Scholar 

  179. Sheline, C. T., Wang, H., Cai, A. -L., Dawson, V. L. & Choi, D. W. Involvement of poly ADP ribosyl polymerase-1 in acute but not chronic zinc toxicity. Eur. J. Neurosci. 18, 1402–1409 (2003).

    PubMed  Google Scholar 

  180. Terry, R. D. & Katzman, R. Senile dementia of the Alzheimer type. Ann. Neurol. 14, 497–506 (1983).

    CAS  PubMed  Google Scholar 

  181. Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    CAS  PubMed  Google Scholar 

  182. Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA 82, 4245–4249 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Bush, A. I., Pettingell, W. H. Jr, Paradis, M. D. & Tanzi, R. E. Modulation of A β adhesiveness and secretase site cleavage by zinc. J. Biol. Chem. 269, 12152–12158 (1994).

    CAS  PubMed  Google Scholar 

  184. Bush, A. I. et al. Rapid induction of Alzheimer A β amyloid formation by zinc. Science 265, 1464–1467 (1994). First report that amyloid-β specifically and saturably binds and is precipitated by zinc.

    CAS  PubMed  Google Scholar 

  185. Regland, B. et al. Treatment of Alzheimer's disease with clioquinol. Dement. Geriatr. Cogn. Disord. 12, 408–414 (2001).

    CAS  PubMed  Google Scholar 

  186. Ritchie, C. W. et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch. Neurol. 60, 1685–1691 (2003).

    PubMed  Google Scholar 

  187. Bush, A. I., Pettingell, W. H. Jr. de Paradis, M., Tanzi, R. E. & Wasco, W. The amyloid β-protein precursor and its mammalian homologues. Evidence for a zinc-modulated heparin-binding superfamily. J. Biol. Chem. 269, 26618–26621 (1994).

    CAS  PubMed  Google Scholar 

  188. Bush, A. I. et al. A novel zinc(II) binding site modulates the function of the β A4 amyloid protein precursor of Alzheimer's disease. J. Biol. Chem. 268, 16109–16112 (1993).

    CAS  PubMed  Google Scholar 

  189. Multhaup, G., Bush, A. I., Pollwein, P. & Masters, C. L. Interaction between the zinc (II) and the heparin binding site of the Alzheimer's disease β A4 amyloid precursor protein (APP). FEBS Lett. 355, 151–154 (1994).

    CAS  PubMed  Google Scholar 

  190. Multhaup, G. et al. Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide. Biochemistry 37, 7224–7230 (1998).

    CAS  PubMed  Google Scholar 

  191. Liu, S. T., Howlett, G. & Barrow, C. J. Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the A β peptide of Alzheimer's disease. Biochemistry 38, 9373–9378 (1999).

    CAS  PubMed  Google Scholar 

  192. Esch, F. S. et al. Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248, 1122–1124 (1990).

    CAS  PubMed  Google Scholar 

  193. Huang, X. et al. Zinc-induced Alzheimer's Aβ1-40 aggregation is mediated by conformational factors. J. Biol. Chem. 272, 26464–26470 (1997).

    CAS  PubMed  Google Scholar 

  194. Atwood, C. S. et al. Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 12817–12826 (1998).

    CAS  PubMed  Google Scholar 

  195. Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L. & Markesbery, W. R. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 158, 47–52 (1998).

    CAS  PubMed  Google Scholar 

  196. Opazo, C. et al. Metalloenzyme-like activity of Alzheimer's disease β-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2 . J. Biol. Chem. 277, 40302–40308 (2002).

    CAS  PubMed  Google Scholar 

  197. Dong, J. et al. Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42, 2768–2773 (2003).

    CAS  PubMed  Google Scholar 

  198. Atwood, C. S. et al. Characterization of copper interactions with Alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1-42. J. Neurochem. 75, 1219–1233 (2000).

    CAS  PubMed  Google Scholar 

  199. White, A. R. et al. The Alzheimer's disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. J. Neurosci. 19, 9170–9179 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Smith, M. A. et al. Amyloid-β deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem. 70, 2212–2215 (1998).

    CAS  PubMed  Google Scholar 

  201. Cuajungco, M. P., Frederickson, C. J. & Bush, A. I. Amyloid-β metal interaction and metal chelation. Subcell. Biochem. 38, 235–254 (2005).

    CAS  PubMed  Google Scholar 

  202. Bellingham, S. A. et al. Gene knockout of amyloid precursor protein and amyloid precursor-like protein-2 increases cellular copper levels in primary mouse cortical neurons and embryonic fibroblasts. J. Neurochem. 91, 423–428 (2004).

    CAS  PubMed  Google Scholar 

  203. Maynard, C. J. et al. Overexpression of Alzheimer's disease amyloid-β opposes the age-dependent elevations of brain copper and iron. J. Biol. Chem. 277, 44670–44676 (2002).

    CAS  PubMed  Google Scholar 

  204. Bush, A. I. The metallobiology of Alzheimer's disease. Trends Neurosci. 26, 207–214 (2003).

    CAS  PubMed  Google Scholar 

  205. Huang, X. et al. Cu(II) potentiation of Alzheimer Aβ neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274, 37111–37116 (1999). Genetic ablation of ZnT3 decreases vessel wall amyloid-β deposition in an APP transgenic mouse model of Alzheimer's disease.

    CAS  PubMed  Google Scholar 

  206. Huang, X. et al. The A β peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609–7616 (1999).

    CAS  PubMed  Google Scholar 

  207. Rottkamp, C. A. et al. Redox-active iron mediates amyloid-β toxicity. Free Radic. Biol. Med. 30, 447–450 (2001).

    CAS  PubMed  Google Scholar 

  208. Atwood, C. S. et al. Copper catalyzed oxidation of Alzheimer Aβ. Cell Mol. Biol. (Noisy-le-grand) 46, 777–783 (2000).

    CAS  Google Scholar 

  209. Atwood, C. S. et al. Copper mediates dityrosine cross-linking of Alzheimer's amyloid-β. Biochemistry 43, 560–568 (2004).

    CAS  PubMed  Google Scholar 

  210. Barnham, K. J. et al. Neurotoxic, redox-competent Alzheimer's β-amyloid is released from lipid membrane by methionine oxidation. J. Biol. Chem. 278, 42959–42965 (2003).

    CAS  PubMed  Google Scholar 

  211. McLean, C. A. et al. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46, 860–866 (1999).

    CAS  PubMed  Google Scholar 

  212. Cherny, R. A. et al. Aqueous dissolution of Alzheimer's disease Aβ amyloid deposits by biometal depletion. J. Biol. Chem. 274, 23223–23228 (1999). Amyloid-β causes toxicity by producing hydrogen peroxide catalytically on binding copper ions.

    CAS  PubMed  Google Scholar 

  213. Head, E. et al. Oxidation of Aβ and plaque biogenesis in Alzheimer's disease and Down syndrome. Neurobiol. Dis. 8, 792–806 (2001).

    CAS  PubMed  Google Scholar 

  214. Turnbull, S., Tabner, B. J., El Agnaf, O. M., Twyman, L. J. & Allsop, D. New evidence that the Alzheimer β-amyloid peptide does not spontaneously form free radicals: an ESR study using a series of spin-traps. Free Radic. Biol. Med. 30, 1154–1162 (2001).

    CAS  PubMed  Google Scholar 

  215. Hensley, K. et al. Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65, 2146–2156 (1995).

    CAS  PubMed  Google Scholar 

  216. Lee, J. Y., Cole, T. B., Palmiter, R. D., Suh, S. W. & Koh, J. Y. Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc. Natl Acad. Sci. USA 99, 7705–7710 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Friedlich, A. L. et al. Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer's disease. J. Neurosci. 24, 3453–3459 (2004). The precipitation of amyloid-β in the post-mortem brain tissue of patients with Alzheimer's disease is reversible with zinc chelation.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Sillevis Smitt, P. A. et al. Metallothionein in amyotrophic lateral sclerosis. Biol. Signals 3, 193–197 (1994).

    CAS  PubMed  Google Scholar 

  219. Sillevis Smitt, P. A., Blaauwgeers, H. G., Troost, D. & de Jong, J. M. Metallothionein immunoreactivity is increased in the spinal cord of patients with amyotrophic lateral sclerosis. Neurosci. Lett. 144, 107–110 (1992).

    CAS  PubMed  Google Scholar 

  220. Reaume, A. G. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet. 13, 43–47 (1996).

    CAS  PubMed  Google Scholar 

  221. Liochev, S. I., Chen, L. L., Hallewell, R. A. & Fridovich, I. Superoxide-dependent peroxidase activity of H48Q: a superoxide dismutase variant associated with familial amyotrophic lateral sclerosis. Arch. Biochem. Biophys. 346, 263–268 (1997).

    CAS  PubMed  Google Scholar 

  222. Singh, R. J. et al. Reexamination of the mechanism of hydroxyl radical adducts formed from the reaction between familial amyotrophic lateral sclerosis-associated Cu,Zn superoxide dismutase mutants and H2O2 . Proc. Natl Acad. Sci. USA 95, 6675–6680 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Roe, J. A. et al. In vivo peroxidative activity of FALS-mutant human CuZnSODs expressed in yeast. Free Radic. Biol. Med. 32, 169–174 (2002).

    CAS  PubMed  Google Scholar 

  224. Estevez, A. G. et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286, 2498–2500 (1999).

    CAS  PubMed  Google Scholar 

  225. Gong, Y. H. & Elliott, J. L. Metallothionein expression is altered in a transgenic murine model of familial amyotrophic lateral sclerosis. Exp. Neurol. 162, 27–36 (2000).

    CAS  PubMed  Google Scholar 

  226. Nagano, S. et al. Reduction of metallothioneins promotes the disease expression of familial amyotrophic lateral sclerosis mice in a dose-dependent manner. Eur. J. Neurosci. 13, 1363–1370 (2001).

    CAS  PubMed  Google Scholar 

  227. Puttaparthi, K. et al. Disease progression in a transgenic model of familial amyotrophic lateral sclerosis is dependent on both neuronal and non-neuronal zinc binding proteins. J. Neurosci. 22, 8790–8796 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Canzoniero, L. M., Manzerra, P., Sheline, C. T. & Choi, D. W. Membrane-permeant chelators can attenuate Zn2+-induced cortical neuronal death. Neuropharmacology 45, 420–428 (2003).

    CAS  PubMed  Google Scholar 

  229. Lee, J. Y., Friedman, J. E., Angel, I., Kozak, A. & Koh, J. Y. The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human β-amyloid precursor protein transgenic mice. Neurobiol. Aging 25, 1315–1321 (2004).

    CAS  PubMed  Google Scholar 

  230. Rosenberg, G., Angel, I., Kozak, A., Rehovot, I. & Schneider, D. Evaluation of safety and changes in the NIH stroke scale, Rankin, and Barthel scores following DP-b99 administration in acute stroke patients. Stroke 35, 338 (2004).

    Google Scholar 

  231. Kawahara, M., Kato-Negishi, M. & Kuroda, Y. Pyruvate blocks zinc-induced neurotoxicity in immortalized hypothalamic neurons. Cell. Mol. Neurobiol. 22, 87–93 (2002).

    CAS  PubMed  Google Scholar 

  232. Kelland, E. E., Kelly, M. D. & Toms, N. J. Pyruvate limits zinc-induced rat oligodendrocyte progenitor cell death. Eur. J. Neurosci. 19, 287–294 (2004).

    PubMed  Google Scholar 

  233. Lee, J. Y., Kim, Y. H. & Koh, J. Y. Protection by pyruvate against transient forebrain ischemia in rats. J. Neurosci. 21, RC171 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Dobsak, P. & Courderot-Masuyer, C. Antioxidative properties of pyruvate and protection of the ischemic rat heart during cardioplegia. J. Cardiovasc. Pharmacol. 34, 651–659 (1999).

    CAS  PubMed  Google Scholar 

  235. Sheline, C. T., Behrens, M. M. & Choi, D. W. Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. J. Neurosci. 20, 3139–3146 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Albers, G. W. Advances in intravenous thrombolytic therapy for treatment of acute stroke. Neurology 57, S77–S81 (2001).

    CAS  PubMed  Google Scholar 

  237. Tsirka, S. E., Rogove, A. D. & Strickland, S. Neuronal cell death and tPA63. Nature 384, 123–124 (1996).

    CAS  PubMed  Google Scholar 

  238. Kim, Y. H., Park, J. H., Hong, S. H. & Koh, J. Y. Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator. Science 284, 647–650 (1999).

    CAS  PubMed  Google Scholar 

  239. Siddiq, M. M. & Tsirka, S. E. Modulation of zinc toxicity by tissue plasminogen activator. Mol. Cell. Neurosci. 25, 162–171 (2004).

    CAS  PubMed  Google Scholar 

  240. Bennett, M. R. The concept of transmitter receptors: 100 years on. Neuropharmacology 39, 523–546 (2000).

    CAS  PubMed  Google Scholar 

  241. Fatt, P. & Katz, B. The effect of inhibitory nerve impulses on a crustacean muscle fibre. J. Physiol. (Lond.) 121, 374–389 (1953).

    CAS  Google Scholar 

  242. Whitcomb, D. C. & Taylor, I. L. A new twist in the brain-gut axis. Am. J. Med. Sci. 304, 334–338 (1992).

    CAS  PubMed  Google Scholar 

  243. Delezenne, C. & Morel, H. Action catalytique des venins des serpents sur les acids nucleiques. Cr. Acad. Sci. 244–246 (1919).

  244. Frederickson, C. J., Perez-Clausell, J. & Danscher, G. Zinc-containing 7S-NGF complex. Evidence from zinc histochemistry for localization in salivary secretory granules. J. Histochem. Cytochem. 35, 579–583 (1987).

    CAS  PubMed  Google Scholar 

  245. Kristiansen, L. H., Rungby, J., Sondergaard, L. G., Stoltenberg, M. & Danscher, G. Autometallography allows ultrastructural monitoring of zinc in the endocrine pancreas. Histochem. Cell Biol. 115, 125–129 (2001).

    CAS  PubMed  Google Scholar 

  246. Sorensen, M. B., Stoltenberg, M., Juhl, S., Danscher, G. & Ernst, E. Ultrastructural localization of zinc ions in the rat prostate: an autometallographic study. Prostate 31, 125–130 (1997).

    CAS  PubMed  Google Scholar 

  247. Muller, A. & Geyer, G. Submicroscopic heavy metal localization in the prosecreta of the Paneth cells of the mouse. (Translation) Gegenbaurs. Morphol. Jahrb. 113, 70–77 (1969).

    CAS  PubMed  Google Scholar 

  248. Gustafson, G. T. Heavy metals in rat mast cell granules. Lab. Invest. 17, 588–598 (1967).

    CAS  PubMed  Google Scholar 

  249. Gol'dberg, E. D., Bovt, V. D. & Eshchenko, V. A. Diagnostic value of selective cytochemical reaction to zinc in peripheral blood granulocytes. (Translation) Klin. Lab Diagn. 25–27 (1993).

  250. Ieshchenko, V. A., Bovt, V. D., Skoliboh, S. O. & Volovyk, M. V. The cytochemical dithizone reaction of the blood granulocytes in zinc-deficient states. (Translation). Lik. Sprava. 86–88 (1994).

  251. Thorlacius-Ussing, O. Zinc in the anterior pituitary of rat: a histochemical and analytical work. Neuroendocrinology 45, 233–242 (1987).

    CAS  PubMed  Google Scholar 

  252. Haug, F. M. Electron microscopical localization of the zinc in hippocampal mossy fibre synapses by a modified sulfide silver procedure. Histochemie 8, 355–368 (1967).

    CAS  PubMed  Google Scholar 

  253. Frederickson, C. J. et al. Method for identifying neuronal cells suffering zinc toxicity by use of a novel fluorescent sensor. J. Neurosci. Methods 139, 79–89 (2004).

    CAS  PubMed  Google Scholar 

  254. Shen, Y. & Yang, X. L. Zinc modulation of AMPA receptors may be relevant to splice variants in carp retina. Neurosci. Lett. 259, 177–180 (1999).

    CAS  PubMed  Google Scholar 

  255. Molnar, P. & Nadler, J. V. Synaptically-released zinc inhibits N-methyl-D-aspartate receptor activation at recurrent mossy fiber synapses. Brain Res. 910, 205–207 (2001).

    CAS  PubMed  Google Scholar 

  256. Zirpel, L. & Parks, T. N. Zinc inhibition of group I mGluR-mediated calcium homeostasis in auditory neurons. J. Assoc. Res. Otolaryngol. 2, 180–187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Casagrande, S., Valle, L., Cupello, A. & Robello, M. Modulation by Zn2+ and Cd2+ of GABAA receptors of rat cerebellum granule cells in culture. Eur. Biophys. J. 32, 40–46 (2003).

    CAS  PubMed  Google Scholar 

  258. Xie, X. & Smart, T. G. Giant GABAB-mediated synaptic potentials induced by zinc in the rat hippocampus: paradoxical effects of zinc on the GABAB receptor. Eur. J. Neurosci. 5, 430–436 (1993).

    CAS  PubMed  Google Scholar 

  259. Connor, M. A. & Chavkin, C. Ionic zinc may function as an endogenous ligand for the haloperidol-sensitive sigma 2 receptor in rat brain. Mol. Pharmacol. 42, 471–479 (1992).

    CAS  PubMed  Google Scholar 

  260. Patterson, T. A., Connor, M., Appleyard, S. M. & Chavkin, C. Oocytes from Xenopus laevis contain an intrinsic sigma 2-like binding site. Neurosci. Lett. 180, 159–162 (1994).

    CAS  PubMed  Google Scholar 

  261. Hubbard, P. C. & Lummis, S. C. Zn2+ enhancement of the recombinant 5-HT3 receptor is modulated by divalent cations. Eur. J. Pharmacol. 394, 189–197 (2000).

    CAS  PubMed  Google Scholar 

  262. Holst, B., Elling, C. E. & Schwartz, T. W. Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors. J. Biol. Chem. 277, 47662–47670 (2002).

    CAS  PubMed  Google Scholar 

  263. Tejwani, G. A. & Hanissian, S. H. Modulation of mu, delta and kappa opioid receptors in rat brain by metal ions and histidine. Neuropharmacology 29, 445–452 (1990).

    CAS  PubMed  Google Scholar 

  264. Davies, P. A., Wang, W., Hales, T. G. & Kirkness, E. F. A novel class of ligand-gated ion channel is activated by Zn2+. J. Biol. Chem. 278, 712–717 (2003).

    CAS  PubMed  Google Scholar 

  265. Easaw, J. C., Jassar, B. S., Harris, K. H. & Jhamandas, J. H. Zinc modulation of ionic currents in the horizontal limb of the diagonal band of Broca. Neuroscience 94, 785–795 (1999).

    CAS  PubMed  Google Scholar 

  266. Green, W. N., Weiss, L. B. & Andersen, O. S. Batrachotoxin-modified sodium channels in planar lipid bilayers. Characterization of saxitoxin- and tetrodotoxin-induced channel closures. J. Gen. Physiol. 89, 873–903 (1987).

    CAS  PubMed  Google Scholar 

  267. Kajita, H., Whitwell, C. & Brown, P. D. Properties of the inward-rectifying Cl channel in rat choroid plexus: regulation by intracellular messengers and inhibition by divalent cations. Pflugers Arch. 440, 933–940 (2000).

    CAS  PubMed  Google Scholar 

  268. Lin, H., Zhu, Y. J. & Lal, R. Amyloid β protein (1-40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry 38, 11189–11196 (1999).

    CAS  PubMed  Google Scholar 

  269. Spiridon, M., Kamm, D., Billups, B., Mobbs, P. & Attwell, D. Modulation by zinc of the glutamate transporters in glial cells and cones isolated from the tiger salamander retina. J. Physiol. (Lond.) 506, 363–376 (1998).

    CAS  Google Scholar 

  270. Wu, Q., Coffey, L. L. & Reith, M. E. Cations affect [3H]mazindol and [3H]WIN 35,428 binding to the human dopamine transporter in a similar fashion. J. Neurochem. 69, 1106–1118 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.I.B. is supported by funds from the National Institute on Aging, the National Health and Medical Research Council of Australia, the Australian Research Council Federation Fellowship, the Alzheimer's Association and the American Health Assistance Foundation

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher J. Frederickson, Jae-Young Koh or Ashley I. Bush.

Ethics declarations

Competing interests

A. I. B. is a shareholder and paid consultant for Prana Biotechnology Ltd.

Related links

Related links

DATABASES

Entrez Gene

AIF

APLP1

APLP2

APP

MT3

NGFβ

nNOS

PARP

SOD

S100β

ZnT3

FURTHER INFORMATION

Bush's Laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frederickson, C., Koh, JY. & Bush, A. The neurobiology of zinc in health and disease. Nat Rev Neurosci 6, 449–462 (2005). https://doi.org/10.1038/nrn1671

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1671

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing