Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroenergetics and the kinetic design of excitatory synapses

Key Points

  • The energy supply to the brain limits the timescale of the brain's information processing to the millisecond range.

  • The energy supply therefore imposes a low affinity on AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors, in order that their response is terminated in milliseconds when glutamate is removed from the synaptic cleft.

  • For diffusion to remove glutamate from the synaptic cleft in milliseconds, the diameter of synaptic boutons cannot be larger than 1 μm; therefore, the energy supply to the brain limits bouton size.

  • When glutamate is released at many nearby synapses, hindering clearance from the synaptic cleft by diffusion, in order for glutamate to be removed in milliseconds the initial rate of glutamate removal by transporters has evolved to occur in milliseconds; therefore, the energy supply to the brain sets the rate of this initial transporter step.

  • The high affinity of NMDA (N-methyl-D-aspartate) receptors is determined by their role as coincidence detectors on a timescale of tens of milliseconds, which requires NMDA receptor activation to last much longer than the AMPA receptor activation produced by a brief glutamate transient.

  • The ionic stoichiometry of glutamate transporters, with three Na+ ions being co-transported with each glutamate anion, is set by the need to reduce the extracellular glutamate concentration below the sub-micromolar value that will activate high-affinity NMDA receptors. Therefore, the stoichiometry is directly determined by the timescale on which NMDA receptors mediate coincidence detection.

Abstract

Why is the characteristic timescale of neural information processing in the millisecond range, corresponding to a 'clock speed' of about 1 kHz, whereas the clock speed of modern computers is about 3 GHz? Here we investigate how the brain's energy supply limits the maximum rate at which the brain can compute, and how the molecular components of excitatory synapses have evolved properties that are matched to the information processing they perform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of a glutamatergic synapse.
Figure 2: Distribution of signalling energy expenditure.
Figure 3: Summary of kinetic properties of AMPA and NMDA receptors.
Figure 4: Kinetic properties of glutamate receptors.

Similar content being viewed by others

References

  1. Sarpeshkar, R. Analog versus digital: extrapolating from electronics to neurobiology. Neural Comput. 10, 1601–1638 (1998). Suggests that the division of neural processing into 'analogue' (dendrites) and 'digital' (axons) modes reflects evolution's minimization of brain energy use.

    Article  CAS  Google Scholar 

  2. Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: the brain and the digestive system in human evolution. Curr. Anthropol. 36, 199–221 (1995).

    Article  Google Scholar 

  3. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

    Article  CAS  Google Scholar 

  4. Mitchison, G. Axonal trees and cortical architecture. Trends Neurosci. 15, 122–126 (1992).

    Article  CAS  Google Scholar 

  5. Koulakov, A. A. & Chklovskii, D. B. Orientation preference patterns in mammalian visual cortex: a wire length minimization approach. Neuron 29, 519–527 (2001).

    Article  CAS  Google Scholar 

  6. Levy, W. B. & Baxter, R. A. Energy efficient neural codes. Neural Comput. 8, 531–543 (1996).

    Article  CAS  Google Scholar 

  7. Baddeley, R. et al. Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc. R. Soc. Lond. B 264, 1775–1783 (1997).

    Article  CAS  Google Scholar 

  8. Laughlin, S. B. & Sejnowski, T. J. Communication in neuronal networks. Science 301, 1870–1874 (2003). A review that explains a wide range of CNS design features.

    Article  CAS  Google Scholar 

  9. Koch, C., Rapp, M. & Segev, I. A brief history of time (constants). Cereb. Cortex 6, 93–101 (1996).

    Article  CAS  Google Scholar 

  10. Weckstrom, M. & Laughlin, S. B. Visual ecology and voltage-gated ion channels in insect photoreceptors. Trends Neurosci. 18, 17–21 (1995). A review that analyses how the membrane conductances of insect neurons have kinetics matched to the information processing they perform.

    Article  CAS  Google Scholar 

  11. Lennie, P. The cost of cortical computation. Curr. Biol. 13, 493–497 (2003). Analyses the energy expended on different cellular mechanisms underlying signal processing in the primate cortex.

    Article  CAS  Google Scholar 

  12. Patneau, D. K. & Mayer, M. L. Kinetic analysis of interactions between kainate and AMPA: evidence for activation of a single receptor in mouse hippocampal neurons. Neuron 6, 785–798 (1991). Presents a simple kinetic scheme that captures many important features of AMPA receptor behaviour.

    Article  CAS  Google Scholar 

  13. Partin, K. M., Fleck, M. W. & Mayer, M. L. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J. Neurosci. 16, 6634–6647 (1996).

    Article  CAS  Google Scholar 

  14. Krampfl, K. et al. Control of kinetic properties of GluR2 flop AMPA-type channels: impact of R/G nuclear editing. Eur. J. Neurosci. 15, 51–62 (2002).

    Article  Google Scholar 

  15. Bergles, D. E., Diamond, J. S. & Jahr, C. E. Clearance of glutamate inside the synapse and beyond. Curr. Opin. Neurobiol. 9, 293–298 (1999).

    Article  CAS  Google Scholar 

  16. Shepherd, G. M. G. & Harris, K. M. Three dimensional structure and composition of CA3–CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J. Neurosci. 18, 8300–8310 (1998).

    Article  CAS  Google Scholar 

  17. Rossi, D. J., Alford, S., Mugnaini, E. & Slater, N. T. Properties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fibre–unipolar brush cell synapse. J. Neurophysiol. 74, 24–42 (1995).

    Article  CAS  Google Scholar 

  18. Kinney, G. A., Overstreet, L. S. & Slater, N. T. Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J. Neurophysiol. 78, 1320–1333 (1997).

    Article  CAS  Google Scholar 

  19. Wadiche, J. I., Arriza, J. L., Amara, S. G. & Kavanaugh, M. P. Kinetics of a human glutamate transporter. Neuron 14, 1019–1027 (1995).

    Article  CAS  Google Scholar 

  20. Otis, T. S. & Kavanaugh, M. P. Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J. Neurosci. 20, 2749–2757 (2000). Demonstrates rapid removal of glutamate by the most important glutamate transporter in the brain.

    Article  CAS  Google Scholar 

  21. Grewer, C., Watzke, N., Wiessner, M. & Rauen, T. Glutamate translocation of the neuronal glutamate transporter EAAC1 ocurs within milliseconds. Proc. Natl Acad. Sci. USA 97, 9706–9711 (2000).

    Article  CAS  Google Scholar 

  22. Auger, C. & Attwell, D. Fast removal of synaptic glutamate by postsynaptic transporters. Neuron 28, 547–558 (2000).

    Article  CAS  Google Scholar 

  23. Lehre, K. P. & Danbolt, N. C. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci. 18, 8751–8757 (1998).

    Article  CAS  Google Scholar 

  24. Dehnes, Y. et al. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J. Neurosci. 18, 3606–3619 (1998).

    Article  CAS  Google Scholar 

  25. Lester, R. A. & Jahr, C. E. NMDA channel behavior depends on agonist affinity. J. Neurosci. 12, 635–643 (1992). Presents a simple kinetic scheme that captures many important features of NMDA receptor behaviour.

    Article  CAS  Google Scholar 

  26. Clements, J. D. & Westbrook, G. L. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7, 605–613 (1991).

    Article  CAS  Google Scholar 

  27. Popescu, G. & Auerbach, A. Modal gating of NMDA receptors and the shape of their synaptic response. Nature Neurosci. 6, 476–483 (2003).

    Article  CAS  Google Scholar 

  28. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  29. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 178–179 (1997).

    Article  Google Scholar 

  30. Zerangue, N. & Kavanaugh, M. P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996).

    Article  CAS  Google Scholar 

  31. Levy, L. M., Warr, O. & Attwell, D. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci. 18, 9620–9628 (1998).

    Article  CAS  Google Scholar 

  32. Conn, P. J. & Pin, J. P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237 (1997).

    Article  CAS  Google Scholar 

  33. Toms, N. J., Jane, D. E., Tse, H. W. & Roberts, P. J. Characterization of metabotropic glutamate receptor-stimulated phosphoinositide hydrolysis in rat cultured cerebellar granule cells. Br. J. Pharmacol. 116, 2824–2827 (1995).

    Article  CAS  Google Scholar 

  34. Makoff, A., Lelchuk, R., Oxer, M., Harrington, K. & Emson, P. Molecular characterization and localization of human metabotropic glutamate receptor type 4. Brain Res. Mol. Brain Res. 37, 239–248 (1996).

    Article  CAS  Google Scholar 

  35. Lerma, J., Paternain, A. V., Rodriguez-Moreno, A. & Lopez-Garcia, J. C. Molecular physiology of kainate receptors. 81, 971–998 (2001).

  36. Colquhoun, D., Jonas, P. & Sakmann, B. Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J. Physiol. (Lond.) 458, 261–287 (1992).

    Article  CAS  Google Scholar 

  37. Zorumski, C. F., Mennerick, S. & Que, J. Modulation of excitatory synaptic transmission by low concentrations of glutamate in cultured rat hippocampal neurons. J. Physiol. (Lond.) 494, 465–477 (1996).

    Article  CAS  Google Scholar 

  38. Jones, K. A., Wilding, T. J., Huettner, J. E. & Costa, A. M. Desensitization of kainate receptors by kainate, glutamate and diastereomers of 4-methylglutamate. Neuropharmacology 36, 853–863 (1997).

    Article  CAS  Google Scholar 

  39. Wilding, T. J. & Huettner, J. E. Activation and desensitization of hippocampal kainate receptors. J. Neurosci. 17, 2713–2721 (1997).

    Article  CAS  Google Scholar 

  40. Paternain, A. V., Rodriguez-Moreno, A., Villarroel, A. & Lerma, J. Activation and desensitization properties of native and recombinant kainate receptors. Neuropharmacology 37, 1249–1259 (1998).

    Article  CAS  Google Scholar 

  41. Choi, D. W. Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7, 369–379 (1987).

    Article  CAS  Google Scholar 

  42. Barbour, B. An evaluation of synapse independence. J. Neurosci. 21, 7969–7984 (2001).

    Article  CAS  Google Scholar 

  43. Heckmann, M., Bufler, J., Franke, C. & Dudel, J. Kinetics of homomeric GluR6 glutamate receptor channels. Biophys. J. 71, 1743–1750 (1996).

    Article  CAS  Google Scholar 

  44. Swanson, G. T. & Heinemann, S. F. Heterogeneity of homomeric GluR5 kainate receptor desensitization expressed in HEK293 cells. J. Physiol. (Lond.) 513, 639–646 (1998).

    Article  CAS  Google Scholar 

  45. Castillo, P. E., Malenka, R. C. & Nicoll, R. A. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388, 182–186 (1997).

    Article  CAS  Google Scholar 

  46. Vignes, M. & Collingridge, G. L. The synaptic activation of kainate receptors. Nature 388, 179–182 (1997).

    Article  CAS  Google Scholar 

  47. Kidd, F. L. & Isaac, J. T. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 400, 569–573 (1999).

    Article  CAS  Google Scholar 

  48. Kidd, F. L. & Isaac, J. T. Kinetics and activation of postsynaptic kainate receptors at thalamocortical synapses: role of glutamate clearance. J. Neurophysiol. 86, 1139–1148 (2001).

    Article  CAS  Google Scholar 

  49. Li, P. et al. Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature 397, 161–164 (1999).

    Article  CAS  Google Scholar 

  50. Frerking, M. & Ohliger-Frerking, P. AMPA receptors and kainate receptors encode different features of afferent activity. J. Neurosci. 22, 7434–7443 (2002).

    Article  CAS  Google Scholar 

  51. Batchelor, A. M. & Garthwaite, J. Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature 385, 74–77 (1997).

    Article  CAS  Google Scholar 

  52. Shen, K. Z. & Johnson, S. W. A slow excitatory postsynaptic current mediated by G-protein-coupled metabotropic glutamate receptors in rat ventral tegmental dopamine neurons. Eur. J. Neurosci. 9, 48–54 (1997).

    Article  CAS  Google Scholar 

  53. Tempia, F., Miniaci, M. C., Anchisi, D. & Strata, P. Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. J. Neurophysiol. 80, 520–528 (1998).

    Article  CAS  Google Scholar 

  54. Kammermeier, P. J. & Ikeda, S. R. Desensitization of group I metabotropic glutamate receptors in rat sympathetic neurons. J. Neurophysiol. 87, 1669–1676 (2002).

    Article  CAS  Google Scholar 

  55. Guatteo, E., Mercuri, N. B., Bernardi, G. & Knopfel, T. Group I metabotropic glutamate receptors mediate an inward current in rat substantia nigra dopamine neurons that is independent from calcium mobilization. J. Neurophysiol. 82, 1974–1981 (1999).

    Article  CAS  Google Scholar 

  56. Borowsky, I. W. & Collins, R. C. Metabolic anatomy of brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities. J. Comp. Neurol. 288, 401–413 (1989).

    Article  CAS  Google Scholar 

  57. Zeki, S. Localization and globalization in consciousness vision. Annu. Rev. Neurosci. 24, 57–86 (2001).

    Article  CAS  Google Scholar 

  58. Hestrin, S. Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 357, 686–689 (1992).

    Article  CAS  Google Scholar 

  59. Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R. & Monyer, H. NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J. Neurosci. 17, 2469–2476 (1997).

    Article  CAS  Google Scholar 

  60. Barlow, H. B. What causes trichromacy? A theoretical analysis using comb-filtered spectra. Vision Res. 22, 635–643 (1982). This paper analyses how the sampling range of a set of photoreceptors dictates how many different receptor types it is worth expressing to sample the whole wavelength range: a problem analogous to deciding how many glutamate receptor subtypes should be expressed to sample synaptically released glutamate.

    Article  CAS  Google Scholar 

  61. Collingridge, G. L., Herron, C. E. & Lester, R. A. Frequency-dependent N-methyl-D-aspartate receptor-mediated synaptic transmission in rat hippocampus. J. Physiol. (Lond.) 399, 301–312 (1988).

    Article  CAS  Google Scholar 

  62. Dingledine, R., Hynes, M. A. & King, G. L. Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in the rat hippocampal slice. J. Physiol. (Lond.) 380, 175–189 (1986).

    Article  CAS  Google Scholar 

  63. Weibel, E. R. Symmorphosis: on Form and Function in Shaping Life (Harvard Univ. Press, USA, 2000).

    Google Scholar 

  64. Gardner, S. M., Trussell, L. O. & Oertel, D. Correlation of AMPA receptor subunit composition with synaptic input in the mammalian cochlear nuclei. J. Neurosci. 21, 7428–7437 (2001).

    Article  CAS  Google Scholar 

  65. Walker, H. C., Lawrence, J. J. & McBain, C. J. Activation of kinetically distinct synaptic conductances on inhibitory interneurons by electrotonically overlapping afferents. Neuron 35, 161–171 (2002).

    Article  CAS  Google Scholar 

  66. Sterling, P. & Matthews, G. Structure and function of ribbon synapses. Trends Neurosci. 28, 20–29 (2005).

    Article  CAS  Google Scholar 

  67. Attwell, D., Barbour, B. & Szatkowski, M. Nonvesicular release of neurotransmitter. Neuron 11, 401–407 (1993).

    Article  CAS  Google Scholar 

  68. Faisal, A. A., White, J. A. & Laughlin, S. B. Ion channel noise places limits on the miniaturization of the brain's wiring. Curr. Biol. 15, 1143–1149 (2005).

    Article  CAS  Google Scholar 

  69. Hoge, R. D. et al. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc. Natl Acad. Sci. USA 96, 9403–9408 (1999).

    Article  CAS  Google Scholar 

  70. Buchweitz, E., Sinha, A. K. & Weiss, H. R. Cerebral regional oxygen consumption and supply in anesthetized cat. Science 209, 499–501 (1980).

    Article  Google Scholar 

  71. Hertz, M. M., Paulsen, O. B., Barry, D. I., Christiansen, J. S. & Svendsen, P. A. Insulin increases glucose transfer across the blood–brain barrier in man. J. Clin. Invest. 67, 597–604 (1981).

    Article  CAS  Google Scholar 

  72. Mandeville, J. B. et al. MRI measurement of the temporal evolution of relative CMRO2 during rat forepaw stimulation. Magn. Reson. Med. 42, 944–951 (1999).

    Article  CAS  Google Scholar 

  73. Cavaglia, M. et al. Regional variation in brain capillary density and vascular response to ischemia. Brain Res. 910, 81–93 (2001).

    Article  CAS  Google Scholar 

  74. Harrison, R. V., Harel, N., Panesar, J. & Mount, R. J. Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb. Cortex 12, 225–233 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Barbour, M. Häusser, S. Laughlin and A. Silver for helpful discussion. Supported by the Wellcome Trust and a Wolfson-Royal Society award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Attwell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

AMPA receptors

EAAT4

GLAST

GLT1

Kainate receptors

mGluR receptors

NMDA receptors

FURTHER INFORMATION

Attwell's homepage

Glossary

MEMBRANE TIME CONSTANT

The product of the capacitance and resistance of the cell membrane, which sets the timescale over which membrane currents change the voltage. A small time constant means that the membrane potential can change rapidly.

MEMBRANE RESISTANCE

The ratio of the voltage change produced across the cell membrane to the size of current injected into the cell: the resistance is set by the number and conductance of the ion channels in the cell membrane.

MEMBRANE CAPACITANCE

The cell membrane separates and stores electrical charge, thereby producing an electrical capacitance, which increases in proportion to membrane area.

VOLTAGE-UNIFORM CELL

A spatially compact cell with no voltage gradients along its cytoplasm, so that the voltage across the cell membrane is the same everywhere (by contrast, cells with long dendrites are often not voltage-uniform).

CELL RESTING POTENTIAL

The membrane potential at which there is no net flow of current across the cell membrane.

NERNST POTENTIAL

The potential at which there is no net movement of an ionic species across the cell membrane, because the free energy decrease resulting from the ion moving down its concentration gradient is balanced by the free energy increase needed to move the ionic charge through the membrane's electric field.

DISSOCIATION CONSTANT

The ratio of the unbinding rate constant (koff) to the binding rate constant (kon) when transmitter binds to a receptor.

AMPLITUDE-WEIGHTED DECAY TIME CONSTANT

For a multi-exponentially decaying synaptic current, this is Σ aiτi / Σ ai, where ai and τi are the amplitude and time constant of each exponential component. An exponential decay with a time constant of this value and an amplitude Σ ai has the same area (that is, charge transfer) as the multi-exponential decay from which it is derived.

EC50

The concentration of agonist that evokes a half-maximal response.

IC50

The concentration of antagonist that produces a half-maximal inhibition of a response.

Q10

The ratio of reaction rates for a 10°C increase in temperature.

SYMMORPHOSIS

According to this theory, animal design is optimized such that structure satisfies but does not exceed functional requirements.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attwell, D., Gibb, A. Neuroenergetics and the kinetic design of excitatory synapses. Nat Rev Neurosci 6, 841–849 (2005). https://doi.org/10.1038/nrn1784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing