Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The origin and specification of cortical interneurons

Key Points

  • In contrast to cortical projection neurons, many cortical interneurons originate in the subcortical forebrain. The primary origins of cortical interneurons in rodents appear to be the caudal and medial ganglionic eminences.

  • Neurochemically and physiologically distinct subgroups of cortical interneurons appear to have distinct places of origin. This finding and other evidence suggest that key aspects of interneuron subgroup fate determination occur in their places of origin.

  • Additional regions that might contribute to the generation of cortical interneurons include the lateral ganglionic eminence, the rostral migratory stream and the septal region. Whether these regions generate specific interneuron subgroups is unknown.

  • In contrast to rodents and ferrets, humans might generate most cortical interneurons in the cortical subventricular zone.

  • The specification of medial ganglionic eminence-derived interneurons depends on the transcription factor Nkx2.1. The crucial maintenance of Nkx2.1 expression during the period of interneuron genesis requires sonic hedgehog signalling.

  • Dlx1 and Dlx2 function to promote the initial migration of cortical interneuron progenitors in the subcortical telencephalon. Postnatally, Dlx1 continues to be expressed in a subset of cortical interneuron subgroups, including those expressing calretinin, in which it is cell-autonomously required for their survival.

  • A number of mouse mutants show phenotypes that include cortical interneuron deficits and behavioural abnormalities, and the abnormal function of cortical interneurons has been implicated in various human neuropsychiatric disorders. Efforts to link the molecular control of interneuron fate determination with the control of interneuron function (connectivity and physiology) are poised to uncover new pathologies of and treatments for important human diseases.

Abstract

GABA-containing interneurons are crucial to both the development and function of the cerebral cortex. Unlike cortical projection neurons, which have a relatively conserved set of characteristics, interneurons include multiple phenotypes that vary on morphological, physiological and neurochemical axes. This diversity, and the relatively late, context-dependent maturation of defining features, has challenged efforts to uncover the transcriptional control of cortical interneuron development. Here, we discuss recent data that are beginning to illuminate the origins and specification of distinct subgroups of cortical interneurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Migration pathways of cortical interneuron subgroups from the ventral telencephalon.
Figure 2: Relative contributions of the MGE and CGE to cortical interneuron neurochemical subgroups.
Figure 3: The transcriptional regulation of cortical interneuron specification and differentiation.

Similar content being viewed by others

References

  1. Whittington, M. A. & Traub, R. D. Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends. Neurosci. 26, 676–682 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, X. J., Tegner, J., Constantinidis, C. & Goldman-Rakic, P. S. Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc. Natl Acad. Sci. USA 101, 1368–1373 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Owens, D. F. & Kriegstein, A. R. Is there more to GABA than synaptic inhibition? Nature Rev. Neurosci. 3, 715–727 (2002).

    Article  CAS  Google Scholar 

  4. Hensch, T. K. Critical period plasticity in local cortical circuits. Nature Rev. Neurosci. 6, 877–888 (2005). An excellent review of the work of T. Hensch, M. Stryker and others that maturation of GABAergic interneurons plays a crucial role in the regulation of critical period plasticity.

    Article  CAS  Google Scholar 

  5. Monyer, H. & Markram, H. Interneuron diversity series: molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci. 27, 90–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. DeDiego, I., Smith-Fernandez, A. & Fairen, A. Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur. J. Neurosci. 6, 983–997 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. de Carlos, J. A., López-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146–6156 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Porteus, M. H., Bulfone, A., Liu, J. K., Lo, L. C. & Rubenstein, J. L. R. DLX-2, MASH-1, and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain. J. Neurosci. 44, 6370–6383 (1994).

    Article  Google Scholar 

  9. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997). A combination of slice migration studies and the analysis of Dlx1/Dlx2 mutant mice was used to demonstrate that many cortical interneurons originate in the subcortical telencephalon.

    Article  CAS  PubMed  Google Scholar 

  10. Tamamaki, N., Fujimori, K. E. & Takauji, R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci. 17, 8313–8323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parnavelas, J. G. The origin and migration of cortical neurones: new vistas. Trends Neurosci. 23, 126–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Marin, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 2, 780–790 (2001).

    Article  CAS  Google Scholar 

  13. Wichterle, H., Garcia-Verdugo, J. M., Herrera, D. G. & Alvarez-Buylla, A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nature Neurosci. 2, 461–466 (1999). Pioneered the transplantation of cells from the MGE or LGE into the postnatal brain in vivo . The authors concluded that MGE progenitors give rise to most cortical interneurons, have a remarkable capacity for migration and survival within different tissues, and might be amenable for use in cell-based therapies.

    Article  CAS  PubMed  Google Scholar 

  14. Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anderson, S. A., Kaznowski, C. E., Horn, C., Rubenstein, J. L. & McConnell, S. K. Distinct origins of neocortical projection neurons and interneurons in vivo. Cereb. Cortex 12, 702–709 (2002). Showed the capacity of progenitors from the MGE-like region (of ferrets) to migrate to the cortex and differentiate into interneurons, and the lack of interneuron generation by cortical progenitors at the same developmental stage, using an entirely in vivo labelling approach.

    Article  PubMed  Google Scholar 

  16. Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 417, 645–649 (2002). In this remarkable study, human fetal slice cultures were used to demonstrate that whereas a subcortical to cortex interneuron migration occurs in humans, most interneurons in humans undergo their terminal mitosis in the cortical subventricular zone.

    Article  CAS  PubMed  Google Scholar 

  17. Metin, C., Baudoin, J. P., Rakic, S. & Parnavelas, J. G. Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur. J. Neurosci. 23, 894–900 (2006).

    Article  PubMed  Google Scholar 

  18. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    CAS  PubMed  Google Scholar 

  19. Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).

    CAS  PubMed  Google Scholar 

  20. Anderson, S. A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J. L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).

    CAS  PubMed  Google Scholar 

  21. Butt, S. J. et al. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48, 591–604 (2005). Used the tremendous innovation of ultrasound-guided in utero transplantation of MGE or CGE progenitors (pioneered in reference 18) to demonstrate that neurochemically and physiologically distinct interneuron subgroups have distinct origins.

    Article  CAS  PubMed  Google Scholar 

  22. Valcanis, H. & Tan, S. S. Layer specification of transplanted interneurons in developing mouse neocortex. J. Neurosci. 23, 5113–5122 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu, Q., Cobos, I., De La Cruz, E., Rubenstein, J. L. & Anderson, S. A. Origins of cortical interneuron subtypes. J. Neurosci. 24, 2612–2622 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gonchar, Y. & Burkhalter, A. Three distinct families of GABAergic neurons in rat visual cortex. Cereb. Cortex 7, 347–358 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Rogers, J. H. Immunohistochemical markers in rat cortex: co-localization of calretinin and calbindin-D28k with neuropeptides and GABA. Brain Res. 587, 147–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. DeFelipe, J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J. Chem. Neuroanat. 14, 1–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Nery, S., Fishell, G. & Corbin, J. G. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nature Neurosci. 5, 1279–1287 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Nery, S., Corbin, J. G. & Fishell, G. Dlx2 progenitor migration in wild type and Nkx2. 1 mutant telencephalon. Cereb. Cortex 13, 895–903 (2003).

    Article  PubMed  Google Scholar 

  30. Corbin, J. G., Rutlin, M., Gaiano, N. & Fishell, G. Combinatorial function of the homeodomain proteins Nkx2. 1 and Gsh2 in ventral telencephalic patterning. Development 130, 4895–4906 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Stenman, J., Toresson, H. & Campbell, K. Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J. Neurosci. 23, 167–174 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lopez-Bendito, G. et al. Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb. Cortex 14, 1122–1133 (2004).

    Article  PubMed  Google Scholar 

  33. Yozu, M., Tabata, H. & Nakajima, K. The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J. Neurosci. 25, 7268–7277 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, Y. et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. 561, 65–90 (2004). Combined intracellular recording and single-cell RT-PCR to correlate a neuron's transcriptosome with its physiological properties. This technique is becoming increasingly important to understanding the molecular basis for interneuron subtype function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jimenez, D., Lopez-Mascaraque, L. M., Valverde, F. & De Carlos, J. A. Tangential migration in neocortical development. Dev. Biol. 244, 155–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nature Neurosci. 9, 173–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Anderson, S., Mione, M., Yun, K. & Rubenstein, J. L. R. Differential origins of projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cerebral Cortex 9, 646–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Meyer, G., Soria, J. M., Martínez-Galán, J. R., Martín-Clemente, B. & Fairén, A. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397, 493–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Zecevic, N. & Rakic, P. Development of layer I neurons in the primate cerebral cortex. J Neurosci. 21, 5607–5619 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ang, E. S. Jr, Haydar, T. F., Gluncic, V. & Rakic, P. Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J. Neurosci. 23, 5805–5815 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luzzati, F. et al. Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc. Natl Acad. Sci. USA 100, 13036–13041 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taglialatela, P., Soria, J. M., Caironi, V., Moiana, A. & Bertuzzi, S. Compromised generation of GABAergic interneurons in the brains of Vax1−/− mice. Development 131, 4239–4249 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Hevner, R. F., Daza, R. A., Englund, C., Kohtz, J. & Fink, A. Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration. Neuroscience 124, 605–618 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Götz, M., Williams, B. P., Bolz, J. & Price, J. The specification of neuronal fate: a common precursor for neurotransmitter subtypes in the rat cerebral cortex in vitro. Eur. J. Neurosci. 7, 889–898 (1995).

    Article  PubMed  Google Scholar 

  45. He, W., Ingraham, C., Rising, L., Goderie, S. & Temple, S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci. 21, 8854–8862 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gulacsi, A. & Lillien, L. Sonic hedgehog and bone morphogenetic protein regulate interneuron development from dorsal telencephalic progenitors in vitro. J. Neurosci. 23, 9862–9872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bellion, A., Wassef, M. & Metin, C. Early differences in axonal outgrowth, cell migration and GABAergic differentiation properties between the dorsal and lateral cortex. Cereb. Cortex 13, 203–214 (2003).

    Article  PubMed  Google Scholar 

  48. Rakic, S. & Zecevic, N. Early oligodendrocyte progenitor cells in the human fetal telencephalon. Glia 41, 117–127 (2003).

    Article  PubMed  Google Scholar 

  49. Dayer, A. G., Cleaver, K. M., Abouantoun, T. & Cameron, H. A. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J. Cell Biol. 168, 415–427 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aguirre, A. A., Chittajallu, R., Belachew, S. & Gallo, V. NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. J. Cell Biol. 165, 575–589 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Belachew, S. et al. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol. 161, 169–186 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).

    Article  CAS  PubMed  Google Scholar 

  53. Menezes, J. R., Smith, C. M., Nelson, K. C. & Luskin, M. B. The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain. Mol. Cell. Neurosci. 6, 496–508 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Polleux, F., Whitford, K. L., Dijkhuizen, P. A., Vitalis, T. & Ghosh, A. Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 129, 3147–3160 (2002).

    CAS  PubMed  Google Scholar 

  55. Xu, Q., De La Cruz, E. & Anderson, S. A. Cortical interneuron fate determination: diverse sources for distinct subtypes? Cereb. Cortex 13, 670–676 (2003).

    Article  PubMed  Google Scholar 

  56. Xu, Q., Wonders, C. P. & Anderson, S. A. Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon. Development 132, 4987–4998 (2005). Showed that after patterning has been established, and independent of proliferation, the levels of the interneuron-specifying transcription factor Nkx2.1 are plastic within MGE progenitors depending on their activation by the signaling molecule sonic hedgehog.

    Article  CAS  PubMed  Google Scholar 

  57. Miller, M. W. Cogeneration of retrogradely labeled corticocortical projection and GABA-immunoreactive local circuit neurons in cerebral cortex. Brain Res. 355, 187–192 (1985).

    Article  CAS  PubMed  Google Scholar 

  58. Fairén, A., Cobas, A. & Fonseca, M. Times of generation of glutamic acid decarboxylase immunoreactive neurons in mouse somatosensory cortex. J. Comp. Neurol. 251, 67–83 (1986).

    Article  PubMed  Google Scholar 

  59. Peduzzi, J. D. Genesis of GABA-immunoreactive neurons in the ferret visual cortex. J. Neurosci. 8, 920–931 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yozu, M., Tabata, H. & Nakajima, K. Birth-date dependent alignment of GABAergic neurons occurs in a different pattern from that of non-GABAergic neurons in the developing mouse visual cortex. Neurosci. Res. 49, 395–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Cavanagh, M. E. & Parnavelas, J. G. Development of somatostatin immunoreactive neurons in the rat occipital cortex: a combined immunocytochemical-autoradiographic study. J. Comp. Neurol. 268, 1–12 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. Cavanagh, M. E. & Parnavelas, J. G. Development of vasoactive-intestinal-polypeptide-immunoreactive neurons in the rat occipital cortex: a combined immunohistochemical-autoradiographic study. J. Comp. Neurol. 284, 637–645 (1989).

    Article  CAS  PubMed  Google Scholar 

  63. Kubota, Y., Hattori, R. & Yui, Y. Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain. Res. 649, 159–173 (1994). Parcelled most interneurons of the frontal cortex into three neurochemically distinct subgroups, thereby laying important groundwork for subsequent studies on their origins and specification.

    Article  CAS  PubMed  Google Scholar 

  64. Porter, J. T. et al. Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. Eur. J. Neurosci. 10, 3617–3628 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Lindvall, O. & Bjorklund, A. Intracerebral grafting of inhibitory neurons. A new strategy for seizure suppression in the central nervous system. Adv. Neurol. 57, 561–569 (1992).

    CAS  PubMed  Google Scholar 

  66. Kimura, S. et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 10, 60–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Marin, O., Anderson, S. A. & Rubenstein, J. L. Origin and molecular specification of striatal interneurons. J. Neurosci. 20, 6063–6076 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lupo, G., Harris, W. A. & Lewis, K. E. Mechanisms of ventral patterning in the vertebrate nervous system. Nature Rev. Neurosci. 7, 103–114 (2006).

    Article  CAS  Google Scholar 

  69. Storm, E. E. et al. Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133, 1831–1844 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Kobayashi, D. et al. Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129, 83–93 (2002).

    CAS  PubMed  Google Scholar 

  71. Anderson, R. M., Lawrence, A. R., Stottmann, R. W., Bachiller, D. & Klingensmith, J. Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 129, 4975–4687 (2002).

    CAS  PubMed  Google Scholar 

  72. Kohtz, J. D., Baker, D. P., Corte, G. & Fishell, G. Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic Hedgehog. Development 125, 5079–5089 (1998).

    CAS  PubMed  Google Scholar 

  73. Fuccillo, M., Rallu, M., McMahon, A. P. & Fishell, G. Temporal requirement for hedgehog signaling in ventral telencephalic patterning. Development 131, 5031–5040 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Yung, S. Y. et al. Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc. Natl Acad. Sci. USA 99, 16273–16278 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rallu, M. et al. Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 and Hedgehog signaling. Development 129, 4963–4674 (2002).

    CAS  PubMed  Google Scholar 

  76. Gulacsi, A. G. & Anderson, S. A. Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism. Cereb Cortex (in the press).

  77. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Vallstedt, A., Klos, J. M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Stenman, J. M., Wang, B. & Campbell, K. Tlx controls proliferation and patterning of lateral telencephalic progenitor domains. J. Neurosci. 23, 10568–10576 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tole, S., Ragsdale, C. W. & Grove, E. A. Dorsoventral patterning of the telencephalon is disrupted in the mouse mutant extra-toesJ. Dev. Biol. 217, 254–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Loulier, K., Ruat, M. & Traiffort, E. Analysis of hedgehog interacting protein in the brain and its expression in nitric oxide synthase-positive cells. Neuroreport 16, 1959–1962 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Chuang, P. T., Kawcak, T. & McMahon, A. P. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev. 17, 342–347 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grigoriou, M., Tucker, A. S., Sharpe, P. T. & Pachnis, V. Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development 125, 2063–2074 (1998).

    CAS  PubMed  Google Scholar 

  84. Sharma, K et al. LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95, 817–828 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Zhao, Y. et al. The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc. Natl Acad. Sci. USA 100, 9005–9010 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fragkouli, A. et al. Loss of forebrain cholinergic neurons and impairment in spatial learning and memory in LHX7-deficient mice. Eur. J. Neurosci. 21, 2923–2938 (2005).

    Article  PubMed  Google Scholar 

  87. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Cobos, I. et al. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nature Neurosci. 8, 1059–1068 (2005). This paper might be the first to study the transcriptional regulation of postnatal interneuron development by transplantation of interneuron progenitors from Dlx1 mutant mice into the neonatal cortical plate in vivo.

    Article  CAS  PubMed  Google Scholar 

  89. Alifragis, P., Liapi, A. & Parnavelas, J. G. Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J. Neurosci. 24, 5643–5648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet. 14, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Odent, S. et al. Expression of the Sonic hedgehog (SHH) gene during early human development and phenotypic expression of new mutations causing holoprosencephaly. Hum. Mol. Genet. 8, 1683–1689 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Wallis, D. E. et al. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nature Genet. 22, 196–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Heussler, H. S., Suri, M., Young, I. D. & Muenke, M. Extreme variability of expression of a Sonic Hedgehog mutation: attention difficulties and holoprosencephaly. Arch. Dis. Child. 86, 293–296 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hamilton, S. P. et al. Analysis of four DLX homeobox genes in autistic probands. BMC Genet. 6, 52 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cobos, I., Broccoli, V. & Rubenstein, J. L. The vertebrate ortholog of Aristaless is regulated by Dlx genes in the developing forebrain. J. Comp. Neurol. 483, 292–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Kitamura, K. et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nature Genet. 32, 359–369 (2002). An outstanding example of the power of mouse and human comparative genetics. Arx mutations result in severe abnormalities in interneuron development in mice and severe infantile seizures, therefore providing a rationale for more focused analysis of the human pathology.

    Article  CAS  PubMed  Google Scholar 

  97. Breedveld, G. J. et al. Mutations in TITF-1 are associated with benign hereditary chorea. Hum. Mol. Genet. 11, 971–979 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Kleiner-Fisman, G. et al. Alterations of striatal neurons in benign hereditary chorea. Mov. Disord. 20, 1353–1357 (2005).

    Article  PubMed  Google Scholar 

  99. Hussman, J. P. Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J. Autism Dev. Disord. 31, 247–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Levitt, P., Eagleson, K. L. & Powell, E. M. Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci. 27, 400–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lewis, D. A. GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res. Brain Res. Rev. 31, 270–276 (2000). Although the literature on the neuropathology of schizophrenia is highly variable in terms of scientific rigour, this outstanding review makes an excellent case for the presence of specific abnormalities in interneuron connectivity in the prefrontal cortex of some schizophrenic individuals.

    Article  CAS  PubMed  Google Scholar 

  103. Benes, F. M. & Berretta, S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Jetty, P. V., Charney, D. S. & Goddard, A. W. Neurobiology of generalized anxiety disorder. Psychiatr. Clin. North. Am. 24, 75–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Stefansson, H. et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet. 71, 877–892 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Erbel-Sieler, C. et al. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc. Natl Acad. Sci. USA 101, 13648–13653 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pillai-Nair, N. et al. Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. J. Neurosci. 25, 4659–4671 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Harrison, P. J. & Law, A. J. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol. Psychiatry 60, 132–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Silberberg, G., Darvasi, A., Pinkas-Kramarski, R. & Navon, R. The involvement of ErbB4 with schizophrenia: association and expression studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141, 142–148 (2006).

    Article  CAS  Google Scholar 

  110. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nature Rev. Neurosci. 6, 312–324 (2005).

    Article  CAS  Google Scholar 

  111. Ango, F. et al. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell 119, 257–272 (2004). Interneuron subtype function is a matter of connectivity and physiology. This seminal paper demonstrated a molecular basis for the targeting of basket interneuron axons in the cerebellum. Chandelier interneurons in the cerebral cortex are likely to use a similar mechanism.

    Article  CAS  PubMed  Google Scholar 

  112. Borrell, V., Yoshimura, Y. & Callaway, E. M. Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J. Neurosci. Methods 143, 151–158 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neurosci. 9, 99–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Oliva, A. A. Jr, Jiang, M., Lam, T., Smith, K. L. & Swann, J. W. Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J. Neurosci. 20, 3354–3368 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Meyer, A. H., Katona, I., Blatow, M., Rozov, A. & Monyer, H. In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J. Neurosci. 22, 7055–7064 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ma, Y., Hu, H., Berrebi, A. S., Mathers, P. H. & Agmon, A. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J. Neurosci. 26, 5069–5082 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. DeFelipe, J. & Jones, E. J. Cajal on the Cerebral Cortex (Oxford University Press, New York, 1988). This text provides an easily approachable but detailed venue into the timeless contributions made by Ramón y Cajal on the cellular composition of the cerebral cortex.

    Google Scholar 

  118. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  Google Scholar 

  119. Parra, P., Gulyas, A. I. & Miles, R. How many subtypes of inhibitory cells in the hippocampus? Neuron 20, 983–993 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Kawaguchi, Y., Karube, F. & Kubota, Y. Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cereb. Cortex 16, 696–711 (2006).

    Article  PubMed  Google Scholar 

  121. Bachy, I. & Retaux, S. GABAergic specification in the basal forebrain is controlled by the LIM-hd factor Lhx7. Dev. Biol. 291, 218–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Stuhmer, T., Anderson, S. A., Ekker, M. & Rubenstein, J. L. Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development 129, 245–252 (2002).

    CAS  PubMed  Google Scholar 

  123. Fode, C. et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Parras, C. M. et al. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev. 16, 324–338 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pleasure, S. J. et al. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28, 727–740 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Casarosa, S., Fode, C. & Guillemot, F. Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525–534 (1999).

    CAS  PubMed  Google Scholar 

  127. Chapouton, P., Gärtner, A. & Götz, M. The role of Pax6 in restricting cell migration between developing cortex and basal ganglia. Development 126, 5569–5579 (1999).

    CAS  PubMed  Google Scholar 

  128. Kroll, T. T. & O'Leary, D. D. Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc. Natl Acad. Sci. USA 102, 7374–7379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Monaghan, A. P. et al. Defective limbic system in mice lacking the tailless gene. Nature 390, 515–517 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Muzio, L. et al. Conversion of cerebral cortex into basal ganglia in Emx2−/−Pax6Sey/Sey double-mutant mice. Nature Neurosci. 5, 737–745 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work is supported by grants from the National Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart A. Anderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

autism

holoprosencephaly

schizophrenia

Glossary

Fate-mapping approaches

Experiments that are designed to determine the relationship between the origin or genetic make-up of a cell and its differentiated fate.

Telencephalon

The anterior-most region of the neural tube, consisting of the cerebral cortex, basal ganglia, hippocampus, septal nuclei and olfactory bulb.

Subpallium

The regions of the telencephalon ventral to the cerebral cortex, including the basal ganglia.

Parvalbumin

(PV). A calcium-binding protein that is localized to, and potentially acts as an endogenous buffer for, fast-spiking cortical interneurons.

Somatostatin

(SST). A neuropeptide that is localized to a subset of cortical interneurons.

Calretinin

(CR). A calcium-binding protein that is localized to a subset of cortical interneurons.

S-phase of the cell cycle

The phase of the cell cycle during which DNA replication takes place.

Bipolar cells

Small cells with narrow dendritic arborizations that extend vertically, often across the entire cortical thickness.

Martinotti cells

Cells containing axons that project towards cortical layer I, and that primarily target the distal-most dendrites of pyramidal neurons.

Holoprosencephaly

A developmental disorder caused by the failure of the forebrain to divide into bilateral hemispheres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wonders, C., Anderson, S. The origin and specification of cortical interneurons. Nat Rev Neurosci 7, 687–696 (2006). https://doi.org/10.1038/nrn1954

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing