Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How to make a mesodiencephalic dopaminergic neuron

An Erratum to this article was published on 01 February 2007

Key Points

  • Mesodiencepahlic dopaminergic (mdDA) neurons consist of multiple molecular and functional distinguishable subsets, besides the 'old' anatomical definition of the substantia nigra pars compacta and the ventral tegmental area.

  • Subset specification is established through specific molecular coding of the ventricular zone in dorsoventral and rostrocaudal axes.

  • A combination of several signalling molecules including retinoic acid, WNTs, sonic hedgehog and transforming growth factors, as well as neurotrophic factors including brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, influence the emergence and survival of mdDA neurons in addition to cell intrinsic molecular coding.

  • Specific mdDA subsets define specific connectivity to the forebrain regions such as the striatum and prefrontal cortex, providing specific functional networks.

  • Guidance molecules from the netrin–DCC (deleted in colorectal cancer), ROBO–SLIT and semaphorin–plexin–neuropilin pathways are essential for providing initial guidance rules to direct outgrowing mdDA axons towards the ventral forebrain.

  • Molecular programmes for mdDA development form the basis for embryonic stem (ES) cell engineering of mdDA neurons, including subset specification.

  • Transplantation paradigms with engineered ES cells, stem cells that are induced to develop the mdDA phenotype or embryonic mdDA cells should include axon guidance rules to ensure proper interactions and connectivity with striatal targets.

Abstract

Dopaminergic neurons located in the ventral mesodiencephalon are essential for the control of voluntary movement and the regulation of emotion, and are severely affected in neurodegenerative diseases such as Parkinson's disease. Recent advances in molecular biology and mouse genetics have helped to unravel the mechanisms involved in the development of mesodiencephalic dopaminergic (mdDA) neurons, including their specification, migration and differentiation, as well as the processes that govern axonal pathfinding and their specific patterns of connectivity and maintenance. Here, we follow the developmental path of these neurons with the goal of generating a molecular code that could be exploited in cell-replacement strategies to treat diseases such as Parkinson's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomical classification of dopaminergic cell groups in the CNS.
Figure 2: The region in the CNS from which mdDA neurons emerge.
Figure 3: Guidance of mdDA axonal outgrowth.
Figure 4: Molecular codes for the generation of mdDA neurons.

Similar content being viewed by others

References

  1. Engele, J. & Schilling, K. Growth factor-induced c-fos expression defines distinct subsets of midbrain dopaminergic neurons. Neuroscience 73, 397–406 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Puelles, L. & Verney, C. Early neuromeric distribution of tyrosine-hydroxylase-immunoreactive neurons in human embryos. J. Comp. Neurol. 394, 283–308 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Verney, C., Zecevic, N. & Puelles, L. Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos, as revealed by cytoarchitecture and tyrosine hydroxylase, calretinin, calbindin, and GABA immunoreactions. J. Comp. Neurol. 429, 22–44 (2001). Demonstrates the origin of mdDA neurons in the developing human brain in specific longitudinal and transverse domains, leading to molecular specification.

    Article  CAS  PubMed  Google Scholar 

  4. Neuhoff, H., Neu, A., Liss, B. & Roeper, J. Ih channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J. Neurosci. 22, 1290–1302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puelles, L. & Rubenstein, J. L. R. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 26, 469–476 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Marín, F., Herrero, M.-T., Vyas, S. & Puelles, L. Ontogeny of tyrosine hydroxylase mRNA expression in mid- and forebrain: neuromeric pattern and novel positive regions. Dev. Dyn. 234, 709–717 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Smits, S. M., Burbach, J. P. H. & Smidt, M. P. Developmental origin and fate of meso-diencephalic dopamine neurons. Prog. Neurobiol. 78, 1–16 (2006). Summarizes the data that led to the hypothesis that mdDA neurons arise from specific molecularly distinguishable regions in the ventricular zone and explains how this leads to subset specification of mature mdDA neurons.

    Article  CAS  PubMed  Google Scholar 

  8. Burbach, J. P. H. & Smidt, M. P. Molecular programming of stem cells into mesodiencephalic dopaminergic neurons. Trends Neurosci. 29, 601–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Baek, J. H., Hatakeyama, J., Sakamoto, S., Ohtsuka, T. & Kageyama, R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133, 2467–2476 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Hynes, M. et al. Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15, 35–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Hynes, M. & Rosenthal, A. Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr. Opin. Neurobiol. 9, 26–36 (1999). A description of how regionalization of the CNS leads to the creation of a permissive zone where mdDA neurons arise.

    Article  CAS  PubMed  Google Scholar 

  12. Hynes, M. et al. The seven-transmembrane receptor Smoothened cell-autonomously induces multiple ventral cell types. Nature Neurosci. 3, 41–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Rhinn, M. & Brand, M. The midbrain–hindbrain boundary organizer. Curr. Opin. Neurobiol. 11, 34–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Simeone, A., Puelles, E. & Acampora, D. The Otx family. Curr. Opin. Genet. Dev. 12, 409–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Simeone, A. Towards the comprehension of genetic mechanisms controlling brain morphogenesis. Trends Neurosci. 25, 119–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Glavic, A., Gómez-Skarmeta, J. L. & Mayor, R. The homeoprotein Xiro1 is required for midbrain–hindbrain boundary formation. Development 129, 1609–1621 (2002).

    CAS  PubMed  Google Scholar 

  17. Acampora, D., Gulisano, M. & Simeone, A. Otx genes and the genetic control of brain morphogenesis. Mol. Cell. Neurosci. 13, 1–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Acampora, D., Postiglione, M. P., Avantaggiato, V., Bonito, M. D. & Simeone, A. The role of Otx and Otp genes in brain development. Int. J. Dev. Biol. 44, 669–677 (2000).

    CAS  PubMed  Google Scholar 

  19. Acampora, D., Gulisano, M., Broccoli, V. & Simeone, A. Otx genes in brain morphogenesis. Prog. Neurobiol. 64, 69–95 (2001). Very elegant description of the role of Otx genes in defining the segments and patterning of the vertebrate forebrain and in particular the formation of the isthmus.

    Article  CAS  PubMed  Google Scholar 

  20. Acampora, D. et al. Otx genes in the evolution of the vertebrate brain. Brain Res. Bull. 66, 410–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Wassarman, K. M. et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124, 2923–2934 (1997).

    CAS  PubMed  Google Scholar 

  22. Millet, S. et al. A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401, 161–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Joyner, A. L., Liu, A. & Millet, S. Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr. Opin. Cell Biol. 12, 736–741 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Farkas, L. M., Dünker, N., Roussa, E., Unsicker, K. & Krieglstein, K. Transforming growth factor-β(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J. Neurosci. 23, 5178–86 (2003). Elegant description of the putative role of TGFβ in the maturation and survival of mdDA neurons. In particular, the data on the in vivo situation make this paper essential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Danielian, P. & McMahon, A. Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383, 332–334 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Castelo-Branco, G. et al. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc. Natl Acad. Sci. USA 100, 12747–12752 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Castelo-Branco, G., Rawal, N. & Arenas, E. GSK-3β inhibition/β-catenin stabilization in ventral midbrain precursors increases differentiation into dopamine neurons. J. Cell. Sci. 117, 5731–5737 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Avantaggiato, V., Acampora, D., Tuorto, F. & Simeone, A. Retinoic acid induces stage-specific repatterning of the rostral central nervous system. Dev. Biol. 175, 347–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Clotman, F., Maele-Fabry, G. V. & Picard, J. J. Retinoic acid induces a tissue-specific deletion in the expression domain of Otx2. Neurotoxicol. Teratol. 19, 163–169 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Holder, N. & Hill, J. Retinoic acid modifies development of the midbrain–hindbrain border and affects cranial ganglion formation in zebrafish embryos. Development 113, 1159–1170 (1991).

    CAS  PubMed  Google Scholar 

  31. Puelles, L. & Rubenstein, J. L. Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci. 16, 472–479 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Rubenstein, J. L., Martinez, S., Shimamura, K. & Puelles, L. The embryonic vertebrate forebrain: the prosomeric model. Science 266, 578–580 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Rubenstein, J. L., Shimamura, K., Martinez, S. & Puelles, L. Regionalization of the prosencephalic neural plate. Annu. Rev. Neurosci. 21, 445–477 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Craven, S. E. et al. Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131, 1165–1173 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Puelles, E. et al. Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development 131, 2037–2048 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Vernay, B. et al. Otx2 regulates subtype specification and neurogenesis in the midbrain. J. Neurosci. 25, 4856–4867 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawano, H., Ohyama, K., Kawamura, K. & Nagatsu, I. Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res. Dev. Brain Res. 86, 101–113 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Hanaway, J., McConnell, J. A. & Netsky, M. G. Histogenesis of the substantia nigra, ventral tegmental area of Tsai and interpeduncular nucleus: an autoradiographic study of the mesencephalon in the rat. J. Comp. Neurol. 142, 59–73 (1971).

    Article  CAS  PubMed  Google Scholar 

  39. Shults, C., Hashimoto, R., Brady, R. & Gage, F. Dopaminergic cells align along radial glia in the developing mesencephalon of the rat. Neuroscience 38, 427–436 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Flores, C. et al. Netrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine. Mol. Psychiatry 10, 606–612 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Fazeli, A. et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386, 796–804 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Nishikawa, S., Goto, S., Yamada, K., Hamasaki, T. & Ushio, Y. Lack of Reelin causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and Relnrl mutant mice. J. Comp. Neurol. 461, 166–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Ballmaier, M., Zoli, M., Leo, G., Agnati, L. F. & Spano, P. Preferential alterations in the mesolimbic dopamine pathway of heterozygous reeler mice: an emerging animal-based model of schizophrenia. Eur. J. Neurosci. 15, 1197–1205 (2002).

    Article  PubMed  Google Scholar 

  44. Ohyama, K. et al. Coordinate expression of L1 and 6B4 proteoglycan/phosphacan is correlated with the migration of mesencephalic dopaminergic neurons in mice. Brain Res. Dev. Brain Res. 107, 219–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Demyanenko, G. P., Shibata, Y. & Maness, P. F. Altered distribution of dopaminergic neurons in the brain of L1 null mice. Brain Res. Dev. Brain Res. 126, 21–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Shults, C. W. & Kimber, T. A. Mesencephalic dopaminergic cells exhibit increased density of neural cell adhesion molecule and polysialic acid during development. Brain Res. Dev. Brain Res. 65, 161–172 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Vitalis, T., Cases, O., Engelkamp, D., Verney, C. & Price, D. J. Defect of tyrosine hydroxylase-immunoreactive neurons in the brains of mice lacking the transcription factor Pax6. J. Neurosci. 20, 6501–6516 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Smidt, M. et al. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nature Neurosci. 3, 337–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Saucedo-Cardenas, O. et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl Acad. Sci. USA 95, 4013–4018 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smidt, M. P. et al. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131, 1145–1155 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Simon, H., Saueressig, H., Wurst, W., Goulding, M. & O'Leary, D. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J. Neurosci. 21, 3126–3134 (2001). A crucial paper that convincingly shows the role of the engrailed genes in specifying the midbrain and its role in the development of mdDA neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Asbreuk, C. H. J., Vogelaar, C. F., Hellemons, A., Smidt, M. P. & Burbach, J. P. H. CNS expression pattern of Lmx1b and coexpression with Ptx genes suggest functional cooperativity in the development of forebrain motor control systems. Mol. Cell. Neurosci. 21, 410–420 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Roussa, E. et al. TGF-β is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo. Ectopic induction in dorsal mesencephalon. Stem Cells 24, 2120–2129 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Prakash, N. & Wurst, W. Genetic networks controlling the development of midbrain dopaminergic neurons. J. Physiol. 575, 403–410 (2006). In this review, an elegant overview is provided that describes most of the events that are involved in generating mdDA neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smits, S. M., Ponnio, T., Conneely, O. M., Burbach, J. P. H. & Smidt, M. P. Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur. J. Neurosci. 18, 1731–1738 (2003).

    Article  PubMed  Google Scholar 

  56. Wallen, A. A. et al. Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopamine neurons and in the brain stem. Mol. Cell. Neurosci. 18, 649–663 (2001).

    Article  CAS  Google Scholar 

  57. Zetterström, R. et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248–250 (1997). The first paper to describe the role of NURR1 in the development of mdDA neurons. It was shown later, however, that the 'agenesis' claim is not correct — the early mdDA neurons are born, but are lost as development progresses.

    Article  PubMed  Google Scholar 

  58. Kim, J.-Y. et al. Dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression. J. Neurochem. 85, 1443–1454 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Park, C.-H. et al. Differential actions of the proneural genes encoding Mash1 and neurogenins in Nurr1-induced dopamine neuron differentiation. J. Cell Sci. 119, 2310–2320 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Smidt, M. et al. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc. Natl Acad. Sci. USA 94, 13305–13310 (1997). Here the cloning and identification of Pitx3 is described. These data described the first transcription factor that is exclusively expressed in mdDA neurons and thereby provided a new, unique tool and study object in relation to mdDA neuron development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hatakeyama, J., Tomita, K., Inoue, T. & Kageyama, R. Roles of homeobox and bHLH genes in specification of a retinal cell type. Development 128, 1313–1322 (2001).

    CAS  PubMed  Google Scholar 

  62. Andersson, E. et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124, 393–405 (2006). Here, the early instructive role of LMX1A is described in terms of mdDA neuron differentiation. In addition, this role was confirmed through elegant mouse ES cell engineering, where the authors were able to show the generation of high levels of mdDA neurons.

    Article  CAS  PubMed  Google Scholar 

  63. Adams, K., Maida, J., Golden, J. & Riddle, R. The transcription factor Lmx1b maintains Wnt1 expression within the isthmic organizer. Development 127, 1857–1867 (2000).

    CAS  PubMed  Google Scholar 

  64. Kele, J. et al. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 133, 495–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Andersson, E., Jensen, J. B., Parmar, M., Guillemot, F. & Björklund, A. Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2. Development 133, 507–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Prakash, N. et al. A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development 133, 89–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Panhuysen, M. et al. Effects of Wnt1 signaling on proliferation in the developing mid-/hindbrain region. Mol. Cell. Neurosci. 26, 101–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Albéri, L., Sgadò, P. & Simon, H. H. Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 131, 3229–3236 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Simon, H. H., Bhatt, L., Gherbassi, D., Sgadó, P. & Alberí, L. Midbrain dopaminergic neurons: determination of their developmental fate by transcription factors. Ann. NY Acad. Sci. 991, 36–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Simon, H. H., Thuret, S. & Alberi, L. Midbrain dopaminergic neurons: control of their cell fate by the engrailed transcription factors. Cell Tissue Res. 318, 53–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Thuret, S., Bhatt, L., O'Leary, D. D. M. & Simon, H. H. Identification and developmental analysis of genes expressed by dopaminergic neurons of the substantia nigra pars compacta. Mol. Cell. Neurosci. 25, 394–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Sgadò, P. et al. Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proc. Natl Acad. Sci. USA 103, 15242–15247 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smidt, M. P., Smits, S. M. & Burbach, J. P. H. Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur. J. Pharmacol. 480, 75–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Nunes, I., Tovmasian, L. T., Silva, R. M., Burke, R. E. & Goff, S. P. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc. Natl Acad. Sci. USA 100, 4245–4250 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hwang, D.-Y., Ardayfio, P., Kang, U. J., Semina, E. V. & Kim, K.-S. Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res. Mol. Brain Res. 114, 123–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Zhao, S. et al. Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons. Eur. J. Neurosci. 19, 1133–1140 (2004).

    Article  PubMed  Google Scholar 

  77. van den Munckhof, P. et al. Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130, 2535–2542 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Bidinost, C. et al. Heterozygous and homozygous mutations in PITX3 in a large Lebanese family with posterior polar cataracts and neurodevelopmental abnormalities. Invest. Ophthalmol. Vis. Sci. 47, 1274–1280 (2006).

    Article  PubMed  Google Scholar 

  79. Semina, E. et al. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nature Genet. 19, 167–170 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Smith, D., Wagner, E., Koul, O., McCaffery, P. & Dräger, U. C. Retinoic acid synthesis for the developing telencephalon. Cereb. Cortex 11, 894–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Westerlund, M., Galter, D., Carmine, A. & Olson, L. Tissue- and species-specific expression patterns of class I, III, and IV Adh and Aldh1 mRNAs in rodent embryos. Cell Tissue Res. 1–10 (2005).

  82. McCaffery, P. & Dräger, U. C. Hot spots of retinoic acid synthesis in the developing spinal cord. Proc. Natl Acad. Sci. USA 91, 7194–7197 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wallén, A. et al. Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp. Cell Res. 253, 737–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. McCaffery, P. & Dräger, U. C. High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc. Natl Acad. Sci. USA 91, 7772–7776 (1994). In this paper it was elegantly shown that RALDH1 is present at high levels in mdDA neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Galter, D., Buervenich, S., Carmine, A., Anvret, M. & Olson, L. ALDH1 mRNA: presence in human dopamine neurons and decreases in substantia nigra in Parkinson's disease and in the ventral tegmental area in schizophrenia. Neurobiol. Dis. 14, 637–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Chung, S. et al. The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol. Cell. Neurosci. 28, 241–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Perlmann, T. & Jansson, L. A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev. 9, 769–782 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Aarnisalo, P., Kim, C.-H., Lee, J. W. & Perlmann, T. Defining requirements for heterodimerization between the retinoid X receptor and the orphan nuclear receptor Nurr1. J. Biol. Chem. 277, 35118–35123 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Wallen-Mackenzie, A. et al. Nurr1-RXR eterodimers mediate RXR ligand-induced signaling in neuronal cells. Genes Dev. 17, 3036–3047 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. de Urquiza, A. M. et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290, 2140–2144 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Castro, D. et al. Induction of cell cycle arrest and morphological differentiation by Nurr1 and retinoids in dopamine MN9D cells. J. Biol. Chem. 276, 43277–43284 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Fan, X. et al. Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina. Mol. Cell. Biol. 23, 4637–4648 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Blum, M. A null mutation in TGF-α leads to a reduction in midbrain dopaminergic neurons in the substantia nigra. Nature Neurosci. 1, 374–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Roussa, E., Farkas, L. M. & Krieglstein, K. TGF-β promotes survival on mesencephalic dopaminergic neurons in cooperation with Shh and FGF-8. Neurobiol. Dis. 16, 300–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Krieglstein, K. et al. Glial cell line-derived neurotrophic factor requires transforming growth factor-β for exerting its full neurotrophic potential on peripheral and CNS neurons. J. Neurosci. 18, 9822–9834 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peterziel, H., Unsicker, K. & Krieglstein, K. TGFβ induces GDNF responsiveness in neurons by recruitment of GFRα1 to the plasma membrane. J. Cell Biol. 159, 157–167 (2002). Describes the crosstalk between TGF signalling and neurotropic support, and thereby provides a new insight into how these two pathways might interact in mdDA neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Roffler-Tarlov, S. & Graybiel, A. M. Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum. Nature 307, 62–66 (1984).

    Article  CAS  PubMed  Google Scholar 

  98. Joel, D. & Weiner, I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96, 451–474 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Lança, A., Boyd, S., Kolb, B. & van der Kooy, D. The development of a patchy organization of the rat striatum. Brain Res 392, 1–10 (1986).

    Article  PubMed  Google Scholar 

  100. Holmes, C., Jones, S. A. & Greenfield, S. A. The influence of target and non-target brain regions on the development of mid-brain dopaminergic neurons in organotypic slice culture. Brain Res. Dev. Brain Res. 88, 212–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Holmes, C., Jones, S., Budd, T. & Greenfield, S. Non-cholinergic, trophic action of recombinant acetylcholinesterase on mid-brain dopaminergic neurons. J. Neurosci. Res. 49, 207–218 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Polli, J., Billingsley, M. & Kincaid, R. Expression of the calmodulin-dependent protein phosphatase, calcineurin, in rat brain: developmental patterns and the role of nigrostriatal innervation. Brain Res. Dev. Brain Res. 63, 105–119 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Gates, M. A., Torres, E. M., White, A., Fricker-Gates, R. A. & Dunnett, S. B. Re-examining the ontogeny of substantia nigra dopamine neurons. Eur. J. Neurosci. 23, 1384–1390 (2006).

    Article  PubMed  Google Scholar 

  104. Hu, Z., Cooper, M., Crockett, D. P. & Zhou, R. Differentiation of the midbrain dopaminergic pathways during mouse development. J. Comp. Neurol. 476, 301–311 (2004).

    Article  PubMed  Google Scholar 

  105. Wen, Z. & Zheng, J. Q. Directional guidance of nerve growth cones. Curr. Opin. Neurobiol. 16, 52–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Huber, A. B., Kolodkin, A. L., Ginty, D. D. & Cloutier, J.-F. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26, 509–563 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Osborne, P. B., Halliday, G. M., Cooper, H. M. & Keast, J. R. Localization of immunoreactivity for deleted in colorectal cancer (DCC), the receptor for the guidance factor netrin-1, in ventral tier dopamine projection pathways in adult rodents. Neuroscience 131, 671–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Lin, L., Rao, Y. & Isacson, O. Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons. Mol. Cell. Neurosci. 28, 547–555 (2005). Using explant cultures, it was clearly shown that guidance of mdDA axons can be regulated through the netrin and SLIT pathways.

    Article  CAS  PubMed  Google Scholar 

  109. Livesey, F. J. & Hunt, S. P. Netrin and netrin receptor expression in the embryonic mammalian nervous system suggests roles in retinal, striatal, nigral, and cerebellar development. Mol. Cell. Neurosci. 8, 417–429 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Holmes, G. P. et al. Distinct but overlapping expression patterns of two vertebrate slit homologs implies functional roles in CNS development and organogenesis. Mech. Dev. 79, 57–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Hivert, B., Liu, Z., Chuang, C.-Y., Doherty, P. & Sundaresan, V. Robo1 and Robo2 are homophilic binding molecules that promote axonal growth. Mol. Cell. Neurosci. 21, 534–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Marillat, V. et al. Spatiotemporal expression patterns of slit and robo genes in the rat brain. J. Comp. Neurol. 442, 130–155 (2002). The thorough expression analysis of putative guidance factors of mdDA neurons provides an excellent overview that is important in generating a working hypothesis about axon guidance rules that influence mdDA axonal pathfinding.

    Article  PubMed  Google Scholar 

  114. Bagri, A. et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33, 233–248 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Gates, M. A., Coupe, V. M., Torres, E. M., Fricker-Gates, R. A. & Dunnett, S. B. Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. Eur. J. Neurosci. 19, 831–844 (2004).

    Article  PubMed  Google Scholar 

  116. Holmes, C., Jones, S. & Greenfield, S. The influence of target and non-target brain regions on the development of mid-brain dopaminergic neurons in organotypic slice culture. Brain Res. Dev. Brain Res. 88, 212–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Nakamura, S., Ito, Y., Shirasaki, R. & Murakami, F. Local directional cues control growth polarity of dopaminergic axons along the rostrocaudal axis. J. Neurosci. 20, 4112–4119 (2000). The authors use elegant transplantation strategies to elaborate on the guidance cues that are present surrounding the mdDA neuronal region.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bandtlow, C. E. & Zimmermann, D. R. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol. Rev. 80, 1267–1290 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Holt, C. E. & Dickson, B. J. Sugar codes for axons? Neuron 46, 169–172 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee, M. K. & Nikodem, V. M. Differential role of ERK in cAMP-induced Nurr1 expression in N2A and C6 cells. Neuroreport 15, 99–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Charron, F., Stein, E., Jeong, J., McMahon, A. P. & Tessier-Lavigne, M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113, 11–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Kawano, H. et al. Aberrant trajectory of ascending dopaminergic pathway in mice lacking Nkx2.1. Exp. Neurol. 182, 103–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Pasterkamp, R. J. & Kolodkin, A. L. Semaphorin junction: making tracks toward neural connectivity. Curr. Opin. Neurobiol. 13, 79–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Chung, C. Y. et al. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet. 14, 1709–1725 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Numan, S., Gall, C. M. & Seroogy, K. B. Developmental expression of neurotrophins and their receptors in postnatal rat ventral midbrain. J. Mol. Neurosci. 27, 245–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Krieglstein, K. Factors promoting survival of mesencephalic dopaminergic neurons. Cell Tissue Res. 318, 73–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Tomac, A. et al. Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc. Natl Acad. Sci. USA 92, 8274–8278 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Baloh, R. H. Enomoto, H., Johnson, E. M. & Milbrandt, J. The GDNF family ligands and receptors — implications for neural development. Curr. Opin. Neurobiol. 10, 103–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Jain, S. et al. Ret is dispensable for maintenance of midbrain dopaminergic neurons in adult mice. J. Neurosci. 26, 11230–11238 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. von Bohlen und Halbach, O., Minichiello, L. & Unsicker, K. Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of a-synuclein in the substantia nigra. FASEB J. 19, 1740–1742 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Baquet, Z. C., Bickford, P. C. & Jones, K. R. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J. Neurosci. 25, 6251–6259 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zaman, V., Nelson, M. E., Gerhardt, G. A. & Rohrer, B. Neurodegenerative alterations in the nigrostriatal system of trkB hypomorphic mice. Exp. Neurol. 190, 337–346 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Jones, K. R., Fariñas, I., Backus, C. & Reichardt, L. F. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76, 989–999 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Krieglstein, K., Suter-Crazzolara, C., Hötten, G., Pohl, J. & Unsicker, K. Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. J. Neurosci. Res. 42, 724–732 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Krieglstein, K., Suter-Crazzolara, C., Fischer, W. H. & Unsicker, K. TGF-β superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J. 14, 736–742 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dunnett, S. B., Björklund, A. & Lindvall, O. Cell therapy in Parkinson's disease — stop or go? Nature Rev. Neurosci. 2, 365–369 (2001).

    Article  CAS  Google Scholar 

  137. Isacson, O., Bjorklund, L. M. & Schumacher, J. M. Toward full restoration of synaptic and terminal function of the dopaminergic system in Parkinson's disease by stem cells. Ann. Neurol. 53, S135–S146; discussion S146–S148 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Lindvall, O. Stem cells for cell therapy in Parkinson's disease. Pharmacol. Res. 47, 279–287 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Winkler, C., Kirik, D. & Björklund, A. Cell transplantation in Parkinson's disease: how can we make it work? Trends Neurosci 28, 86–92 (2005). In this review, the current status of transplantation paradigms is described and provides a good overview and future perspectives.

    Article  CAS  PubMed  Google Scholar 

  140. Yurek, D. & Sladek, J. Dopamine cell replacement: Parkinson's disease. Annu. Rev. Neurosci. 13, 415–440 (1990).

    Article  CAS  PubMed  Google Scholar 

  141. Björklund, A. et al. Neural transplantation for the treatment of Parkinson's disease. Lancet Neurol. 2, 437–445 (2003).

    Article  PubMed  Google Scholar 

  142. Kim, T. E. et al. Sonic hedgehog and FGF8 collaborate to induce dopaminergic phenotypes in the Nurr1-overexpressing neural stem cell. Biochem. Biophys. Res. Commun. 305, 1040–1048 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Wagner, J. et al. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nature Biotechnol. 17, 653–659 (1999).

    Article  CAS  Google Scholar 

  144. Chung, S. et al. Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur. J. Neurosci. 16, 1829–1838 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Nakano, Y. et al. Presynaptic dopaminergic properties of differentiated mouse embryonic stem cells. Neurochem. Int. 45, 1067–1073 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Park, S. et al. Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci. Lett. 359, 99–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Shim, J.-W. et al. Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL. J. Neurosci. 24, 843–852 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Volpicelli, F. et al. Enhancement of dopaminergic differentiation in proliferating midbrain neuroblasts by sonic hedgehog and ascorbic acid. Neural Plast. 11, 45–57 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zeng, X. et al. Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22, 925–940 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Park, C.-H. et al. In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J. Neurochem. 92, 1265–1276 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Lee, S., Lumelsky, N., Studer, L., Auerbach, J. & McKay, R. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnol. 18, 675–679 (2000).

    Article  CAS  Google Scholar 

  152. Kim, J.-H. et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Smidt, M. P., Smits, S. M. & Burbach, J. P. H. Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra. Cell Tissue Res. 318, 35–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. McMahon, A., Joyner, A., Bradley, A. & McMahon, J. The midbrain–hindbrain phenotype of Wnt-1/Wnt-1 mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69, 581–595 (1992).

    Article  CAS  PubMed  Google Scholar 

  155. Hyman, C. et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–232 (1991).

    Article  CAS  PubMed  Google Scholar 

  156. Beck, K. Functions of brain-derived neurotrophic factor, insulin-like growth factor-I and basic fibroblast growth factor in the development and maintenance of dopaminergic neurons. Prog. Neurobiol. 44, 497–516 (1994).

    Article  CAS  PubMed  Google Scholar 

  157. Sariola, H. & Saarma, M. Novel functions and signalling pathways for GDNF. J. Cell Sci. 116, 3855–3862 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Horger, B. et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J. Neurosci. 18, 4929–4937 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Espejo, M., Cutillas, B., Arenas, T. E. & Ambrosio, S. Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line-derived neurotrophic factor. Cell Transplant. 9, 45–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Hagg, T. Neurotrophins prevent death and differentially affect tyrosine hydroxylase of adult rat nigrostriatal neurons in vivo. Exp. Neurol. 149, 183–192 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Hyman, C. et al. Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wood, T. K., McDermott, K. W. & Sullivan, A. M. Differential effects of growth/differentiation factor 5 and glial cell line-derived neurotrophic factor on dopaminergic neurons and astroglia in cultures of embryonic rat midbrain. J. Neurosci. Res. 80, 759–766 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. O'Keeffe, G. W., Dockery, P. & Sullivan, A. M. Effects of growth/differentiation factor 5 on the survival and morphology of embryonic rat midbrain dopaminergic neurones in vitro. J. Neurocytol. 33, 479–488 (2004).

    Article  PubMed  Google Scholar 

  164. Meyer, M., Matarredona, E. R., Seiler, R. W., Zimmer, J. & Widmer, H. R. Additive effect of glial cell line-derived neurotrophic factor and neurotrophin-4/5 on rat fetal nigral explant cultures. Neuroscience 108, 273–284 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Lingor, P., Unsicker, K. & Krieglstein, K. GDNF and NT-4 protect midbrain dopaminergic neurons from toxic damage by iron and nitric oxide. Exp. Neurol. 163, 55–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Altar, C. A. et al. The neurotrophins NT-4/5 and BDNF augment serotonin, dopamine, and GABAergic systems during behaviorally effective infusions to the substantia nigra. Exp. Neurol. 130, 31–40 (1994).

    Article  CAS  PubMed  Google Scholar 

  167. Poulsen, K. T. et al. TGFβ 2 and TGFβ 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 13, 1245–1252 (1994).

    Article  CAS  PubMed  Google Scholar 

  168. Krieglstein, K., Maysinger, D. & Unsicker, K. The survival response of mesencephalic dopaminergic neurons to the neurotrophins BDNF and NT-4 requires priming with serum: comparison with members of the TGF-β superfamily and characterization of the serum-free culture system. J. Neural Transm. Suppl. 47, 247–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  169. Alexi, T. & Hefti, F. Trophic actions of transforming growth factor α on mesencephalic dopaminergic neurons developing in culture. Neuroscience 55, 903–918 (1993).

    Article  CAS  PubMed  Google Scholar 

  170. Chalazonitis, A., Kessler, J. A., Twardzik, D. R. & Morrison, R. S. Transforming growth factor α, but not epidermal growth factor, promotes the survival of sensory neurons in vitro. J. Neurosci. 12, 583–594 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yurek, D. M., Zhang, L., Fletcher-Turner, A. & Seroogy, K. B. Supranigral injection of neuregulin1-β induces striatal dopamine overflow. Brain Res. 1028, 116–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Segni, A. D., Shaharabani, E., Stein, R. & Pinkas-Kramarski, R. Neuregulins rescue PC12-ErbB-4 cells from cell death induced by β-amyloid peptide: involvement of PI3K and PKC. J. Mol. Neurosci. 26, 57–69 (2005).

    Article  PubMed  Google Scholar 

  173. Thuret, S. et al. The neuregulin receptor, ErbB4, is not required for normal development and adult maintenance of the substantia nigra pars compacta. J. Neurochem. 91, 1302–1311 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Jordan, J., Böttner, M., Schluesener, H. J., Unsicker, K. & Krieglstein, K. Bone morphogenetic proteins: neurotrophic roles for midbrain dopaminergic neurons and implications of astroglial cells. Eur. J. Neurosci. 9, 1699–1709 (1997).

    Article  CAS  PubMed  Google Scholar 

  175. Brederlau, A., Faigle, R., Kaplan, P., Odin, P. & Funa, K. Bone morphogenetic proteins but not growth differentiation factors induce dopaminergic differentiation in mesencephalic precursors. Mol. Cell. Neurosci. 21, 367–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Nohe, A., Keating, E., Knaus, P. & Petersen, N. O. Signal transduction of bone morphogenetic protein receptors. Cell Signal. 16, 291–299 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Iwakura, Y. et al. Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson's disease and its model: neurotrophic implication in nigrostriatal neurons. J. Neurochem. 93, 974–983 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Hanke, M. et al. Heparin-binding epidermal growth factor-like growth factor: a component in chromaffin granules which promotes the survival of nigrostriatal dopaminergic neurones in vitro and in vivo. Neuroscience 124, 757–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Farkas, L. M. & Krieglstein, K. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) regulates survival of midbrain dopaminergic neurons. J. Neural Transm. 109, 267–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Lin, J. & Freeman, M. R. Transactivation of ErbB1 and ErbB2 receptors by angiotensin II in normal human prostate stromal cells. Prostate 54, 1–7 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Timmer, M. et al. Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Exp. Neurol. 187, 118–136 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Reuss, B. & Unsicker, K. Survival and differentiation of dopaminergic mesencephalic neurons are promoted by dopamine-mediated induction of FGF-2 in striatal astroglial cells. Mol. Cell. Neurosci. 16, 781–792 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Shults, C. W., Ray, J., Tsuboi, K. & Gage, F. H. Fibroblast growth factor-2-producing fibroblasts protect the nigrostriatal dopaminergic system from 6-hydroxydopamine. Brain Res. 883, 192–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  184. Caldwell, M. A. & Svendsen, C. N. Heparin, but not other proteoglycans potentiates the mitogenic effects of FGF-2 on mesencephalic precursor cells. Exp. Neurol. 152, 1–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  185. Stachowiak, M. K., Moffett, J., Maher, P., Tucholski, J. & Stachowiak, E. K. Growth factor regulation of cell growth and proliferation in the nervous system. A new intracrine nuclear mechanism. Mol. Neurobiol. 15, 257–283 (1997).

    Article  CAS  PubMed  Google Scholar 

  186. Kramer, E. R. et al. Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol. (in the press).

  187. Jacobs, F. M., Smits, S. M., Hornman, K. J., Burbach, J. P. & Smidt, M. P. Strategies to unravel molecular codes essential for the development of meso-diencephalic dopaminergic neurons. J. Physiol. 575, 397–402 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Jacobs, S. Smits and J. Pasterkamp for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten P. Smidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Parkinson's disease

schizophrenia

FURTHER INFORMATION

Smidt's laboratory

Rudolf-Magnus Institute

Glossary

Notochord

A cord-like structure of mesodermal origin positioned ventrally in the embryo, directly underlying the neural tube. Later in development this structure becomes the vertebral column.

Floor plate

The ventral-most longitudinal subdivision of the neural tube of the midbrain and the spinal cord, which acts as a local signalling centre.

Basal plate

A longitudinal subdivision of the neural tube, lying between the floor plate and the alar plate.

Alar plate

A longitudinal subdivision of the neural tube, lying between the basal plate and the roof plate.

Roof plate

The dorsal-most longitudinal subdivision of the neural tube.

Ventricular zone

A cell layer positioned inside the neural tube, forming the ventricular walls, in which cell divisions that build the developing brain in an inside-out manner take place.

Radial migration

Migration of neurons along radial glia.

Tangential migration

Non-radial neuronal migration, which intersects the radial glia.

Proteoglycans

A class of proteins that are heavily glycosylated.

In ovo electroporation

Technique for gene transfer in developing chicks.

Choreic movement

Clinical condition in which movement control fails, leading to involuntary spasms.

Patch

A small circumscribed area differing from the surrounding area, as described in an anatomically regular pattern in the striatum.

Matrix

A region filled with a regular form of shapes, found as an anatomical landmark in the striatum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smidt, M., Burbach, J. How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 8, 21–32 (2007). https://doi.org/10.1038/nrn2039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing