Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Amyloid-β and tau — a toxic pas de deux in Alzheimer's disease

Abstract

Amyloid-β and tau are the two hallmark proteins in Alzheimer's disease. Although both amyloid-β and tau have been extensively studied individually with regard to their separate modes of toxicity, more recently new light has been shed on their possible interactions and synergistic effects in Alzheimer's disease. Here, we review novel findings that have shifted our understanding of the role of tau in the pathogenesis of Alzheimer's disease towards being a crucial partner of amyloid-β. As we gain a deeper understanding of the different cellular functions of tau, the focus shifts from the axon, where tau has a principal role as a microtubule-associated protein, to the dendrite, where it mediates amyloid-β toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disrupting tau-dependent dendritic targeting of FYN protects neurons from amyloid-β toxicity in mouse models of Alzheimer's disease.
Figure 2: Amyloid-β and tau: three possible modes of interaction.
Figure 3: Proposed 'tau axis hypothesis' of Alzheimer's disease: progressively increasing levels of dendritic tau make neurons vulnerable to amyloid-β.

Similar content being viewed by others

References

  1. Citron, M. Strategies for disease modification in Alzheimer's disease. Nature Rev. Neurosci. 5, 677–685 (2004).

    Article  CAS  Google Scholar 

  2. Brunden, K. R., Trojanowski, J. Q. & Lee, V. M. Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nature Rev. Drug Discov. 8, 783–793 (2009).

    Article  CAS  Google Scholar 

  3. Querfurth, H. W. & LaFerla, F. M. Alzheimer's disease. N. Engl. J. Med. 362, 329–344 (2010).

    Article  CAS  Google Scholar 

  4. Cairns, N. J. et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol. 114, 5–22 (2007).

    Article  Google Scholar 

  5. Braak, H. & Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–278; discussion 278–284 (1995).

    Article  CAS  Google Scholar 

  6. Selkoe, D. J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  CAS  Google Scholar 

  7. Bertram, L. & Tanzi, R. E. The genetic epidemiology of neurodegenerative disease. J. Clin. Invest. 115, 1449–1457 (2005).

    Article  CAS  Google Scholar 

  8. Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Rev. Neurosci. 8, 663–672 (2007).

    Article  CAS  Google Scholar 

  9. Götz, J. & Ittner, L. M. Animal models of Alzheimer's disease and frontotemporal dementia. Nature Rev. Neurosci. 9, 532–544 (2008).

    Article  Google Scholar 

  10. Frost, B. & Diamond, M. I. Prion-like mechanisms in neurodegenerative diseases. Nature Rev. Neurosci. 11, 155–159 (2010).

    Article  CAS  Google Scholar 

  11. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  Google Scholar 

  12. Sisodia, S. S. & St George-Hyslop, P. H. γ-Secretase, notch, Aβ and Alzheimer's disease: where do the presenilins fit in? Nature Rev. Neurosci. 3, 281–290 (2002).

    Article  CAS  Google Scholar 

  13. LaFerla, F. M., Green, K. N. & Oddo, S. Intracellular amyloid-β in Alzheimer's disease. Nature Rev. Neurosci. 8, 499–509 (2007).

    Article  CAS  Google Scholar 

  14. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  Google Scholar 

  15. Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Med. 14, 837–842 (2008).

    Article  CAS  Google Scholar 

  16. Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. & Strittmatter, S. M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457, 1128–1132 (2009).

    Article  CAS  Google Scholar 

  17. Snyder, E. M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nature Neurosci. 8, 1051–1058 (2005).

    Article  CAS  Google Scholar 

  18. Kessels, H. W., Nguyen, L. N., Nabavi, S. & Malinow, R. The prion protein as a receptor for amyloid-β. Nature 466, e3–e4 (2010).

    Article  CAS  Google Scholar 

  19. Small, D. H. et al. The β-amyloid protein of Alzheimer's disease binds to membrane lipids but does not bind to the α7 nicotinic acetylcholine receptor. J. Neurochem. 101, 1527–1538 (2007).

    Article  CAS  Google Scholar 

  20. Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007).

    Article  CAS  Google Scholar 

  21. Goedert, M. & Spillantini, M. G. A century of Alzheimer's disease. Science 314, 777–781 (2006).

    Article  CAS  Google Scholar 

  22. Hirokawa, N., Funakoshi, T., Sato-Harada, R. & Kanai, Y. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. J. Cell Biol. 132, 667–679 (1996).

    Article  CAS  Google Scholar 

  23. Aronov, S., Aranda, G., Behar, L. & Ginzburg, I. Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal. J. Neurosci. 21, 6577–6587 (2001).

    Article  CAS  Google Scholar 

  24. Utton, M. A. et al. The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons. J. Neurosci. 22, 6394–6400 (2002).

    Article  CAS  Google Scholar 

  25. Konzack, S., Thies, E., Marx, A., Mandelkow, E. M. & Mandelkow, E. Swimming against the tide: mobility of the microtubule-associated protein tau in neurons. J. Neurosci. 27, 9916–9927 (2007).

    Article  CAS  Google Scholar 

  26. Ittner, L. M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    Article  CAS  Google Scholar 

  27. Götz, J., Ittner, L. M. & Kins, S. Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer's disease? J. Neurochem. 98, 993–1006 (2006).

    Article  Google Scholar 

  28. Maas, T., Eidenmuller, J. & Brandt, R. Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J. Biol. Chem. 275, 15733–15740 (2000).

    Article  CAS  Google Scholar 

  29. Brion, J. P., Smith, C., Couck, A. M., Gallo, J. M. & Anderton, B. H. Developmental changes in tau phosphorylation: fetal tau is transiently phosphorylated in a manner similar to paired helical filament-tau characteristic of Alzheimer's disease. J. Neurochem. 61, 2071–2080 (1993).

    Article  CAS  Google Scholar 

  30. Götz, J. et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J. 14, 1304–1313 (1995).

    Article  Google Scholar 

  31. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    Article  CAS  Google Scholar 

  32. Ittner, L. M., Ke, Y. D. & Götz, J. Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease. J. Biol. Chem. 284, 20909–20916 (2009).

    Article  CAS  Google Scholar 

  33. Lee, G., Newman, S. T., Gard, D. L., Band, H. & Panchamoorthy, G. Tau interacts with src-family non-receptor tyrosine kinases. J. Cell Sci. 111, 3167–3177 (1998).

    CAS  PubMed  Google Scholar 

  34. Magnani, E. et al. Interaction of tau protein with the dynactin complex. EMBO J. 26, 4546–4554 (2007).

    Article  CAS  Google Scholar 

  35. Bhaskar, K., Yen, S. H. & Lee, G. Disease-related modifications in tau affect the interaction between Fyn and Tau. J. Biol. Chem. 280, 35119–35125 (2005).

    Article  CAS  Google Scholar 

  36. Salter, M. W. & Kalia, L. V. Src kinases: a hub for NMDA receptor regulation. Nature Rev. Neurosci. 5, 317–328 (2004).

    Article  CAS  Google Scholar 

  37. Gu, J. & Zheng, J. Q. Microtubules in dendritic spine development and plasticity. Open Neurosci. J. 3, 128–133 (2009).

    Article  CAS  Google Scholar 

  38. Small, D. H., Mok, S. S. & Bornstein, J. C. Alzheimer's disease and Aβ toxicity: from top to bottom. Nature Rev. Neurosci. 2, 595–598 (2001).

    Article  CAS  Google Scholar 

  39. Götz, J. et al. Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Mol. Psychiatry 9, 664–683 (2004).

    Article  Google Scholar 

  40. Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491 (2001).

    Article  CAS  Google Scholar 

  41. Terwel, D. et al. Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice. Am. J. Pathol. 172, 786–798 (2008).

    Article  CAS  Google Scholar 

  42. Götz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 293, 1491–1495 (2001).

    Article  Google Scholar 

  43. Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H. & LaFerla, F. M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43, 321–332 (2004).

    Article  CAS  Google Scholar 

  44. Coomaraswamy, J. et al. Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer's disease. Proc. Natl Acad. Sci. USA 107, 7969–7974 (2010).

    Article  CAS  Google Scholar 

  45. Rhein, V. et al. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc. Natl Acad. Sci. USA 106, 20057–20062 (2009).

    Article  CAS  Google Scholar 

  46. Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P. & Ferreira, A. Tau is essential to β-amyloid-induced neurotoxicity. Proc. Natl Acad. Sci. USA 99, 6364–6369 (2002).

    Article  CAS  Google Scholar 

  47. Vossel, K. A. et al. Tau reduction prevents Aβ-induced defects in axonal transport. Science 330, 198 (2010).

    Article  CAS  Google Scholar 

  48. Harada, A. et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369, 488–491 (1994).

    Article  CAS  Google Scholar 

  49. Dawson, H. N. et al. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J. Cell Sci. 114, 1179–1187 2001).

    CAS  PubMed  Google Scholar 

  50. Tucker, K. L., Meyer, M. & Barde, Y. A. Neurotrophins are required for nerve growth during development. Nature Neurosci. 4, 29–37 (2001).

    Article  CAS  Google Scholar 

  51. Takashima, A. The mechanism for tau aggregation and its relation to neuronal dysfunction. Alzheimer's & Dementia 6, S144 (2010)

    Article  Google Scholar 

  52. Dawson, H. N. et al. Loss of tau elicits axonal degeneration in a mouse model of Alzheimer's disease. Neuroscience 169, 516–531 (2010).

    Article  CAS  Google Scholar 

  53. Saper, C. B., Wainer, B. H. & German, D. C. Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer's disease. Neuroscience 23, 389–398 (1987).

    Article  CAS  Google Scholar 

  54. Stamer, K., Vogel, R., Thies, E., Mandelkow, E. & Mandelkow, E. M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156, 1051–1063 (2002).

    Article  CAS  Google Scholar 

  55. Pappolla, M. A., Omar, R. A., Kim, K. S. & Robakis, N. K. Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer's disease. Am. J. Pathol. 140, 621–628 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Williamson, R., Usardi, A., Hanger, D. P. & Anderton, B. H. Membrane-bound β-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J. 22, 1552–1559 (2008).

    Article  CAS  Google Scholar 

  57. Ittner, L. M. et al. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc. Natl Acad. Sci. USA 105, 15597–16002 (2008).

    Article  Google Scholar 

  58. Gong, C. X. & Iqbal, K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr. Med. Chem. 15, 2321–2328 (2008).

    Article  CAS  Google Scholar 

  59. Noble, W. et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl Acad. Sci. USA 102, 6990–6995 (2005).

    Article  CAS  Google Scholar 

  60. van Eersel, J. et al. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models. Proc. Natl Acad. Sci. USA 107, 13888–13893 (2010).

    Article  CAS  Google Scholar 

  61. Klein, C. et al. Process. outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. J. Neurosci. 22, 698–707 (2002).

    Article  CAS  Google Scholar 

  62. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).

    Article  CAS  Google Scholar 

  63. Bolmont, T. et al. Induction of tau pathology by intracerebral infusion of amyloid-β-containing brain extract and by amyloid-β deposition in APP x Tau transgenic mice. Am. J. Pathol. 171, 2012–2020 (2007).

    Article  CAS  Google Scholar 

  64. Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 55, 697–711 (2007).

    Article  CAS  Google Scholar 

  65. Grueninger, F. et al. Phosphorylation of Tau at S422 is enhanced by Aβ in TauPS2APP triple transgenic mice. Neurobiol. Dis. 37, 294–306 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the University of Sydney, the National Health & Medical Research Council (NHMRC), the Australian Research Council (ARC) and the J.O. & J.R. Wicking Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lars M. Ittner or Jürgen Götz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

The Brain and Mind Research Institute

Alzheimer's and Parkinson's Disease Laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ittner, L., Götz, J. Amyloid-β and tau — a toxic pas de deux in Alzheimer's disease. Nat Rev Neurosci 12, 67–72 (2011). https://doi.org/10.1038/nrn2967

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing