Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From the stochasticity of molecular processes to the variability of synaptic transmission

Key Points

  • In the CNS, the postsynaptic response to an action potential is variable: neurotransmitter release is probabilistic and the postsynaptic response to neurotransmitter release has variable timing and amplitude.

  • Synaptic transmission results from a sequence of reactive and diffusive molecular processes (such as conformational changes, binding events and diffusion) that display stochastic properties at the molecular scale.

  • At individual synapses, the number of molecules of a given type is small and the stochastic properties of molecular events cannot be neglected. These stochastic properties underlie the variability of the postsynaptic response evoked by an action potential.

  • The stochasticity of presynaptic molecular processes affects the probability of vesicular release, and the stochasticity of postsynaptic molecular processes accounts for the variability in timing and amplitude of the evoked postsynaptic potential.

  • The stochasticity of molecular events seems to be in contradiction with the reliability of synaptic transmission, which raises the issues of robustness and sensitivity in the process. Building an integrated view of how the stochasticity of molecular processes contributes to the variability of synaptic transmission but is nevertheless also compatible with a reliable transmission, is a challenge. A key element is that the steps of synaptic transmission are temporally coupled to each other in cascade.

  • The characteristics of the coupling between steps are likely to reduce the propagation of fluctuations and/or enhance the sensitivity of the system (the ability to distinguish signal from random fluctuations). These characteristics probably include temporal organization of signalling, spatial organization of molecules, cooperativity and stochastic resonance.

Abstract

The variability of the postsynaptic response following a single action potential arises from two sources: the neurotransmitter release is probabilistic, and the postsynaptic response to neurotransmitter release has variable timing and amplitude. At individual synapses, the number of molecules of a given type that are involved in these processes is small enough that the stochastic (random) properties of molecular events cannot be neglected. How the stochasticity of molecular processes contributes to the variability of synaptic transmission, its sensitivity and its robustness to molecular fluctuations has important implications for our understanding of the mechanistic basis of synaptic transmission and of synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic transmission as a sequence of coupled stochastic reactive and diffusive processes.
Figure 2: Different timescales of variability.
Figure 3: Some presynaptic and postsynaptic factors acting on fusion probability and PSP variability.
Figure 4: Model of noise propagation in synaptic transmission.

Similar content being viewed by others

References

  1. Hessler, N. A., Shirke, A. M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Murthy, V. N., Sejnowski, T. J. & Stevens, C. F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. del Castillo, J. & Katz, B. Quantal components of the end-plate potential. J. Physiol. 124, 560–573 (1954). The first description of the quantal basis of synaptic transmission at the neuromuscular junction from the analysis of spontaneous synaptic potentials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Auger, C. & Marty, A. Quantal currents at single-site central synapses. J. Physiol. 526, 3–11 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Branco, T. & Staras, K. The probability of neurotransmitter release: variability and feedback control at single synapses. Nature Rev. Neurosci. 10, 373–383 (2009).

    Article  CAS  Google Scholar 

  6. Hanse, E. & Gustafsson, B. Quantal variability at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J. Physiol. 531, 467–480 (2001). A careful analysis of the variability of postsynaptic potentials evoked by presynaptic stimulations at single synapses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nature Rev. Neurosci. 9, 292–303 (2008).

    Article  CAS  Google Scholar 

  8. Magee, J. C. Dendritic integration of excitatory synaptic input. Nature Rev. Neurosci. 1, 181–190 (2000).

    Article  CAS  Google Scholar 

  9. Carr, C. E. & MacLeod, K. M. Microseconds matter. PLoS Biol. 8, e1000405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Lisman, J. E., Raghavachari, S. & Tsien, R. W. The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nature Rev. Neurosci. 8, 597–609 (2007). A review of the different steps of synaptic transmission and the coupling between these steps.

    Article  CAS  Google Scholar 

  12. McQuarrie, D. A. Stochastic approach to chemical kinetics. J. Appl. Probab. 4, 413–478 (1967).

    Article  Google Scholar 

  13. Gillespie, D. T. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007). A review of stochastic descriptions of chemical kinetics: theory and simulations.

    Article  CAS  PubMed  Google Scholar 

  14. Wilkinson, D. J. Stochastic modelling for quantitative description of heterogeneous biological systems. Nature Rev. Genet. 10, 122–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Peters, A., Palay, S. & Webster, H. The Fine Structure of the Nervous System. (Saunders, Philadelphia, 1976).

    Google Scholar 

  16. Siksou, L. et al. Three-dimensional architecture of presynaptic terminal cytomatrix. J. Neurosci. 27, 6868–6877 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Korn, H. & Faber, D. S. Quantal analysis and synaptic efficacy in the CNS. Trends Neurosci. 14, 439–445 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Katz, B. Neural transmitter release: from quantal secretion to exocytosis and beyond. The Fenn Lecture. J. Neurocytol. 32, 437–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Heuser, J. E. et al. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81, 275–300 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Auger, C., Kondo, S. & Marty, A. Multivesicular release at single functional synaptic sites in cerebellar stellate and basket cells. J. Neurosci. 18, 4532–4547 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ward, B. et al. State-dependent mechanisms of LTP expression revealed by optical quantal analysis. Neuron 52, 649–661 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Branco, T., Staras, K., Darcy, K. J. & Goda, Y. Local dendritic activity sets release probability at hippocampal synapses. Neuron 59, 475–485 (2008). Measurements of release probability at single synaptic boutons, and correlations of these probabilities with synapse locations and with neuronal activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bekkers, J. M., Richerson, G. B. & Stevens, C. F. Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proc. Natl Acad. Sci. USA 87, 5359–5362 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, G. & Tsien, R. W. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375, 404–408 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. McAllister, A. K. & Stevens, C. F. Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc. Natl Acad. Sci. USA 97, 6173–6178 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Silver, R. A., Cull-Candy, S. G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. 494, 231–250 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Geiger, J. R. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Frey, E. & Kroy, K. Brownian motion: a paradigm of soft matter and biological physics. Ann. Phys. 14, 20–50 (2005).

    Article  CAS  Google Scholar 

  29. Triller, A. & Choquet, D. New concepts in synaptic biology derived from single-molecule imaging. Neuron 59, 359–374 (2008). A review about the motion of proteins probed by single molecule imaging, and of the resulting conceptual advances in the description of dynamic macromolecular assemblies, such as synapses.

    Article  CAS  PubMed  Google Scholar 

  30. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Racca, C., Stephenson, F. A., Streit, P., Roberts, J. D. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nimchinsky, E. A., Yasuda, R., Oertner, T. G. & Svoboda, K. The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines. J. Neurosci. 24, 2054–2064 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nusser, Z., Cull-Candy, S. & Farrant, M. Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude. Neuron 19, 697–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Hagiwara, A., Fukazawa, Y., Deguchi-Tawarada, M., Ohtsuka, T. & Shigemoto, R. Differential distribution of release-related proteins in the hippocampal CA3 area as revealed by freeze-fracture replica labeling. J. Comp. Neurol. 489, 195–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. White, J. A., Rubinstein, J. T. & Kay, A. R. Channel noise in neurons. Trends Neurosci. 23, 131–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Bhalla, U. S. Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophys. J. 87, 733–744 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shahrezaei, V. & Swain, P. S. The stochastic nature of biochemical networks. Curr. Opin. Biotechnol. 19, 369–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Bennett, M. R., Gibson, W. G. & Robinson, J. Probabilistic secretion of quanta and the synaptosecretosome hypothesis: evoked release at active zones of varicosities, boutons, and endplates. Biophys. J. 73, 1815–1829 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Choquet, D. & Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nature Rev. Neurosci. 4, 251–265 (2003).

    Article  CAS  Google Scholar 

  43. Frenguelli, B. G. & Malinow, R. Fluctuations in intracellular calcium responses to action potentials in single en passage presynaptic boutons of layer V neurons in neocortical slices. Learn. Mem. 3, 150–159 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. McGuinness, L. et al. Presynaptic NMDARs in the hippocampus facilitate transmitter release at theta frequency. Neuron 68, 1109–1127 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Delcour, A. H., Lipscombe, D. & Tsien, R. W. Multiple modes of N-type calcium channel activity distinguished by differences in gating kinetics. J. Neurosci. 13, 181–194 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, S.-Q., Song, L.-S., Lakatta, E. G. & Cheng, H. Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410, 592–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Zou, H., Lifshitz, L. M., Tuft, R. A., Fogarty, K. E. & Singer, J. J. Visualization of Ca2+ entry through single stretch-activated cation channels. Proc. Natl Acad. Sci. USA 99, 6404–6409 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zou, H., Lifshitz, L. M., Tuft, R. A., Fogarty, K. E. & Singer, J. J. Imaging calcium entering the cytosol through a single opening of plasma membrane ion channels: SCCaFTs - fundamental calcium events. Cell Calcium 35, 523–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Demuro, A. & Parker, I. Imaging single-channel calcium microdomains. Cell Calcium 40, 413–422 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bennett, M. R., Farnell, L. & Gibson, W. G. The probability of quantal secretion near a single calcium channel of an active zone. Biophys. J. 78, 2201–2221 (2000). Detailed simulations of the stochastic dynamics of calcium channels and calcium ions, and their impact on the probability of exocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bucurenciu, I., Bischofberger, J. & Jonas, P. A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse. Nature Neurosci. 13, 19–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Li, L., Bischofberger, J. & Jonas, P. Differential gating and recruitment of P/Q-, N-, and R-Type Ca2+ channels in hippocampal mossy fiber boutons. J. Neurosci. 27, 13420–13429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Burnashev, N. & Rozov, A. Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium 37, 489–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Augustine, G. J., Santamaria, F. & Tanaka, K. Local Calcium signaling in neurons. Neuron 40, 331–346 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Schneggenburger, R. & Neher, E. Presynaptic calcium and control of vesicle fusion. Curr. Opin. Neurobiol. 15, 266–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Neher, E. & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Chad, J. E. & Eckert, R. Calcium domains associated with individual channels can account for anomalous voltage relations of CA-dependent responses. Biophys. J. 45, 993–999 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Simon, S. M. & Llinás, R. R. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys. J. 48, 485–498 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Forti, L., Pouzat, C. & Llano, I. Action potential-evoked Ca2+ signals and calcium channels in axons of developing rat cerebellar interneurones. J. Physiol. 527, 33–48 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shahrezaei, V. & Delaney, K. R. Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: a monte carlo study. Biophys. J. 87, 2352–2364 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wadel, K., Neher, E. & Sakaba, T. The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53, 563–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Becherer, U., Moser, T., Stuhmer, W. & Oheim, M. Calcium regulates exocytosis at the level of single vesicles. Nature Neurosci. 6, 846–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Harms, G. S., Cognet, L., Lommerse, P. H. M., Blab, G. A. & Schmidt, T. Autofluorescent proteins in single-molecule research: applications to live cell. imaging microscopy. Biophys. J. 80, 2396–2408 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaeser, P. S. et al. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144, 282–295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chapman, E. R. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Jahn, R. & Scheller, R. H. SNAREs-engines for membrane fusion. Nature Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  67. Jackson, M. B. & Chapman, E. R. Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu. Rev. Biophys. Biomol. Struct. 35, 135–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Südhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jackson, M. B. & Chapman, E. R. The fusion pores of Ca2+-triggered exocytosis. Nature Struct. Mol. Biol. 15, 684–689 (2008).

    Article  CAS  Google Scholar 

  70. Karunanithi, S., Marin, L., Wong, K. & Atwood, H. L. Quantal Size and Variation Determined by vesicle size in normal and mutant drosophila glutamatergic synapses. J. Neurosci. 22, 10267–10276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, X.-S. et al. The origin of quantal size variation: vesicular glutamate concentration plays a significant role. J. Neurosci. 27, 3046–3056 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Edwards, R. H. The neurotransmitter cycle and quantal size. Neuron 55, 835–858 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Budzinski, K. L. et al. Large structural change in isolated synaptic vesicles upon loading with neurotransmitter. Biophys. J. 97, 2577–2584 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, G., Choi, S. & Tsien, R. W. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22, 395–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Hajos, N., Nusser, Z., Rancz, E. A., Freund, T. F. & Mody, I. Cell type- and synapse-specific variability in synaptic GABAA receptor occupancy. Eur. J. Neurosci. 12, 810–818 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. He, L. & Wu, L.-G. The debate on the kiss-and-run fusion at synapses. Trends Neurosci. 30, 447–455 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, Q., Li, Y. & Tsien, R. W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Franks, K. M., Stevens, C. F. & Sejnowski, T. J. Independent sources of quantal variability at single glutamatergic synapses. J. Neurosci. 23, 3186–3195 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barbour, B. An Evaluation of synapse independence. J. Neurosci. 21, 7969–7984 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Scimemi, A. & Beato, M. Determining the neurotransmitter concentration profile at active synapses. Mol. Neurobiol. 40, 289–306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nusser, Z., Naylor, D. & Mody, I. Synapse-specific contribution of the variation of transmitter concentration to the decay of inhibitory postsynaptic currents. Biophys. J. 80, 1251–1261 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nielsen, T. A., DiGregorio, D. A. & Silver, R. A. Modulation of glutamate mobility reveals the mechanism underlying slow-rising AMPAR EPSCs and the diffusion coefficient in the synaptic cleft. Neuron 42, 757–771 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Min., M. Y., Rusakov, D. A. & Kullmann, D. M. Activation of AMPA, kainate, and metabotropic receptors at hippocampal mossy fiber synapses: role of glutamate diffusion. Neuron 21, 561–570 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Kullmann, D. M., Min., M. Y., Asztely, F. & Rusakov, D. A. Extracellular glutamate diffusion determines the occupancy of glutamate receptors at CA1 synapses in the hippocampus. Phil. Trans. R. Soc. Lond. B 354, 395–402 (1999).

    Article  CAS  Google Scholar 

  85. Szapiro, G. & Barbour, B. Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nature Neurosci. 10, 735–742 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Sylantyev, S. et al. Electric fields due to synaptic currents sharpen excitatory transmission. Science 319, 1845–1849 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Katz, B. & Miledi, R. The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. 224, 665–699 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Traynelis, S. F. & Jaramillo, F. Getting the most out of noise in the central nervous system. Trends Neurosci. 21, 137–145 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    Article  CAS  PubMed  Google Scholar 

  90. Colquhoun, D. & Sakmann, B. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. 369, 501–557 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hallermann, S., Heckmann, S., Dudel, J. & Heckmann, M. Short openings in high resolution single channel recordings of mouse nicotinic receptors. J. Physiol. 563, 645–662 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sakmann, B. & Neher, E. Single-Channel Recording (Springer, New York, 2009).

    Google Scholar 

  93. Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  PubMed  Google Scholar 

  94. Changeux, J. P. & Edelstein, S. J. On allosteric mechanisms and acetylcholine receptors. Trends Biochem. Sci. 19, 399–400 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Edelstein, S. J., Schaad, O., Henry, E., Bertrand, D. & Changeux, J. P. A kinetic mechanism for nicotinic acetylcholine receptors based on multiple allosteric transitions. Biol. Cybern. 75, 361–379 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Karpen, J. W. & Ruiz, M. Ion channels: does each subunit do something on its own? Trends Biochem. Sci. 27, 402–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Edelstein, S. J. & Changeux, J.-P. Relationships between structural dynamics and functional kinetics in oligomeric membrane receptors. Biophys. J. 98, 2045–2052 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sine, S. M. & Engel, A. G. Recent advances in Cys-loop receptor structure and function. Nature 440, 448–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Mukhtasimova, N., Lee, W. Y., Wang, H.-L. & Sine, S. M. Detection and trapping of intermediate states priming nicotinic receptor channel opening. Nature 459, 451–454 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Burzomato, V., Beato, M., Groot-Kormelink, P. J., Colquhoun, D. & Sivilotti, L. G. Single-channel behavior of heteromeric α1β glycine receptors: an attempt to detect a conformational change before the channel opens. J. Neurosci. 24, 10924–10940 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Faber, D. S., Young, W. S., Legendre, P. & Korn, H. Intrinsic quantal variability due to stochastic properties of receptor-transmitter interactions. Science 258, 1494–1498 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Trommershäuser, J., Marienhagen, J. & Zippelius, A. Stochastic model of central synapses: slow diffusion of transmitter interacting with spatially distributed receptors and transporters. J. Theor. Biol. 198, 101–120 (1999).

    Article  PubMed  Google Scholar 

  103. Franks, K. M., Bartol, T. M. & Sejnowski, T. J. A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys. J. 83, 2333–2348 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Raghavachari, S. & Lisman, J. E. Properties of Quantal Transmission at CA1 Synapses. J. Neurophysiol. 92, 2456–2467 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Triller, A. & Choquet, D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci. 28, 133–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Jacob, T. C. et al. Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. J. Neurosci. 25, 10469–10478 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ehrensperger, M.-V., Hanus, C., Vannier, C., Triller, A. & Dahan, M. Multiple Association states between glycine receptors and gephyrin identified by SPT analysis. Biophys. J. 92, 3706–3718 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Charrier, C., Ehrensperger, M.-V., Dahan, M., Levi, S. & Triller, A. Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J. Neurosci. 26, 8502–8511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lévi, S. et al. Homeostatic regulation of synaptic GlyR numbers driven by lateral diffusion. Neuron 59, 261–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Bannai, H. et al. Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics. Neuron 62, 670–682 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 (2008). This work shows how the exchange between desensitized neurotransmitter receptors and naive functional receptors by lateral diffusion contributes to the recovery from synaptic depression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  Google Scholar 

  114. Miller, P., Zhabotinsky, A. M., Lisman, J. E. & Wang, X.-J. The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. PLoS Biol. 3, e107 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zeng, S. & Holmes, W. R. The effect of noise on CaMKII activation in a dendritic spine during LTP induction. J. Neurophysiol. 103, 1798–1808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bhalla, U. S. Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophys. J. 87, 745–753 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kitano, H. Biological robustness. Nature Rev. Genet. 5, 826–837 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Barkai, N. & Shilo, B.-Z. Variability and robustness in biomolecular systems. Mol. Cell 28, 755–760 (2007).

    Google Scholar 

  119. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J. & Doyle, J. Robustness of cellular functions. Cell 118, 675–685 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Bialek, W. & Setayeshgar, S. Cooperativity, sensitivity, and noise in biochemical signaling. Phys. Rev. Lett. 100, 258101 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Swain, P. S. & Longtin, A. Noise in genetic and neural networks. Chaos 16, 026101 (2006).

    Article  PubMed  Google Scholar 

  123. Levine, E. & Hwa, T. Stochastic fluctuations in metabolic pathways. Proc. Natl Acad. Sci. USA 104, 9224–9229 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA 102, 3581–3586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Thattai, M. & van Oudenaarden, A. Attenuation of noise in ultrasensitive signaling cascades. Biophys. J. 82, 2943–2950 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004). A theoretical model describing how fluctuations in a sequence of coupled events propagate from one event to its downstream event, using gene expression as an example.

    Article  CAS  PubMed  Google Scholar 

  127. Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Zheng, X. & Tao, Y. Additivity of noise propagation in a protein cascade. J. Chem. Phys. 128, 165104 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Kholodenko, B. Cell-signalling dynamics in time and space. Nature Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  130. Bucurenciu, I., Kulik, A., Schwaller, B., Frotscher, M. & Jonas, P. Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron 57, 536–545 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Young, S. M. & Neher, E. Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor. Neuron 63, 482–496 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Meinrenken, C. J., Borst, J. G. G. & Sakmann, B. Calcium Secretion coupling at calyx of held governed by nonuniform channel-vesicle topography. J. Neurosci. 22, 1648–1667 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Calamai, M. et al. Gephyrin oligomerization controls GlyR mobility and synaptic clustering. J. Neurosci. 29, 7639–7648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bloodgood, B. L. & Sabatini, B. L. Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310, 866–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Ashby, M. C., Maier, S. R., Nishimune, A. & Henley, J. M. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J. Neurosci. 26, 7046–7055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Holcman, D. & Triller, A. Modeling synaptic dynamics driven by receptor lateral diffusion. Biophys. J. 91, 2405–2415 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rosenmund, C., Stern-Bach, Y. & Stevens, C. F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Clements, J. D., Feltz, A., Sahara, Y. & Westbrook, G. L. Activation kinetics of AMPA receptor channels reveal the number of functional agonist binding sites. J. Neurosci. 18, 119–127 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kertz, J. A., Almeida, P. F. F., Frazier, A. A., Berg, A. K. & Hinderliter, A. The cooperative response of synaptotagmin I C2A. A hypothesis for a Ca2+-driven molecular hammer. Biophys. J. 92, 1409–1418 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Herrick, D. Z., Sterbling, S., Rasch, K. A., Hinderliter, A. & Cafiso, D. S. Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. Biochemistry 45, 9668–9674 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Wiesenfeld, K. & Moss, F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Hänggi, P. Stochastic resonance in biology. How noise can enhance detection of weak signals and help improve biological information processing. Chemphyschem 3, 285–290 (2002).

    Article  PubMed  Google Scholar 

  143. Ho, N. & Destexhe, A. Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J. Neurophysiol. 84, 1488–1496 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Kotaleski, J. H. & Blackwell, K. T. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nature Rev. Neurosci. 11, 239–251 (2010).

    Article  CAS  Google Scholar 

  146. Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet. 6, 451–464 (2005). A review of how stochasticity in gene expression leads to variability in phenotypes for genetically identical cells. This framework could give insight into the importance of stochasticity in synaptic transmission.

    Article  CAS  PubMed  Google Scholar 

  147. Jaramillo, F. & Wiesenfeld, K. Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system. Nature Neurosci. 1, 384–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Priplata, A. et al. Noise-enhanced human balance control. Phys. Rev. Lett. 89, 238101 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Gillespie, D. The chemical Langevin equation. J. Chem. Phys. 113, 297–306 (2000).

    Article  CAS  Google Scholar 

  150. Sekimoto, K. Stochastic Energetics (Springer, 2010).

    Book  Google Scholar 

  151. Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Okabe, S. Molecular anatomy of the postsynaptic density. Mol. Cell. Neurosci. 34, 503–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Masugi-Tokita, M. & Shigemoto, R. High-resolution quantitative visualization of glutamate and GABA receptors at central synapses. Curr. Opin. Neurobiol. 17, 387–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Chen, X. et al. Mass of the postsynaptic density and enumeration of three key molecules. Proc. Natl Acad. Sci. USA 102, 11551–11556 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Siksou, L., Varoqueaux, F., Pascual, O., Triller, A., Brose, N. & Marty S. A common molecular basis for membrane docking and functional priming of synaptic vesicles. Eur. J. Neurosci. 30, 49–56 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work from Triller's group has been funded by the Institut Nationale de la Santé et de la Recherche Médicale (INSERM), the Agence Nationale de la Recherche (ANR) and the Fondation pour la Recherche Médicale (FRM). We thank B. Barbour and S. Edelstein for critical reading and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Triller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Antoine Triller's homepage

Glossary

Stochastic

A characteristic of a process that is determined by one or more random elements and the proces's statistical properties. Here, stochastic and probabilistic have similar meanings, but we use stochastic for molecular processes and probabilistic for integrated processes.

Synaptic complex

A synaptic complex consists of the apposition of a presynaptic active zone with synaptic vesicles and a postsynaptic differentiation characterized by electron-dense material.

SNARE

Soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein (SNAP) receptor.

Active zone

The membrane and submembrane presynaptic region where vesicles are docked and can fuse. This region is about 300nm in diameter.

Release probability

At a synapse, an action potential will trigger vesicle exocytosis with a certain probability. This is called release probability and it varies across synapses and can be modulated by dendritic activity.

Synaptic bouton

Enlargement of the axon, which frequently contains a single active zone and establishes a synaptic contact with a postsynaptic target .

Coefficient of variation

The standard deviation divided by the mean. It gives an estimation of the relative variability of a quantity. A value of 1 is considered large as it means that the standard deviation is equal to 100% of the mean value.

Deterministic

The characteristic of a process whose behaviour is described as a function of variables that take unique and non-variable values at each time point in the process. The behaviour of the process is therefore entirely predictable and determined by equations and starting conditions.

Brownian motion

A random (stochastic) motion, in which the displacement of a particle during a time t follows a probability distribution. Brownian motion is characterized by a diffusion coefficient. Molecules in fluids (for example, cytoplasm and lipid membrane) undergo Brownian motion.

Diffusion coefficient

A parameter characterizing the speed of diffusing molecules. For a brownian mothion in two dimensions, it is the proportionality constant between the explored space and time (for example, measured in μ m2 per s).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribrault, C., Sekimoto, K. & Triller, A. From the stochasticity of molecular processes to the variability of synaptic transmission. Nat Rev Neurosci 12, 375–387 (2011). https://doi.org/10.1038/nrn3025

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing