Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The benefits of noise in neural systems: bridging theory and experiment

Abstract

Although typically assumed to degrade performance, random fluctuations, or noise, can sometimes improve information processing in non-linear systems. One such form of 'stochastic facilitation', stochastic resonance, has been observed to enhance processing both in theoretical models of neural systems and in experimental neuroscience. However, the two approaches have yet to be fully reconciled. Understanding the diverse roles of noise in neural computation will require the design of experiments based on new theory and models, into which biologically appropriate experimental detail feeds back at various levels of abstraction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classical Stochastic resonance versus stochastic facilitation.
Figure 2: The future of stochastic facilitation research.

Similar content being viewed by others

References

  1. Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nature Rev. Neurosci. 9, 292–303 (2008).

    Article  CAS  Google Scholar 

  2. Ermentrout, G. B., Galán, R. F. & Urban, N. N. Reliability, synchrony and noise. Trends Neurosci. 31, 428–434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wiesenfeld, K. & Moss, F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDS. Nature 373, 33–36 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Bulsara, A. R. & Gammaitoni, L. Tuning in to noise. Phys. Today 49, 39–45 (1996).

    Article  Google Scholar 

  5. Gammaitoni, L., Hänggi, P., Jung, P. & Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998).

    Article  CAS  Google Scholar 

  6. McDonnell, M. D. & Abbott, D. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 5, e1000348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rudolph, M. & Destexhe, A. Do neocortical pyramidal neurons display stochastic resonance? J. Comput. Neurosci. 11, 19–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Stacey, W. C. & Durand, D. M. Synaptic noise improves detection of subthreshold signals in hippocampal CA1 neurons. J. Neurophysiol. 86, 1104–1112 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Reinker, S., Puil, E. & Miura, R. M. Membrane resonance and stochastic resonance modulate firing patterns of thalomocortical neurons. J. Comput. Neurosci. 16, 15–25 (2004).

    Article  PubMed  Google Scholar 

  10. Kole, M. H. P., Hallermann, S. & Stuart, G. J. Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J. Neurosci. 26, 1677–1687 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M. & Miesenböck, G. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601–612 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, S. et al. Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice. J. Physiol. 588, 3031–3043 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mino, H. & Durand, D. M. Enhancement of information transmission of sub-threshold signals applied to distal positions of dendritic trees in hippocampal CA1 neuron models with stochastic resonance. Biol. Cybern. 103, 227–236 (2010).

    Article  PubMed  Google Scholar 

  14. Gai, Y., Doiron, B. & Rinzel, J. Slope-based stochastic resonance: how noise enables phasic neurons to encode slow signals. PLOS Comput. Biol. 6, e1000825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Magalhães, F. H. & Kohn, A. F. Vibratory noise to the fingertip enhances balance improvement associated with light touch. Exp. Brain Res. 209, 139–151 (2011).

    Article  PubMed  Google Scholar 

  16. Dykman, M. I. & McClintock, P. V. E. What can stochastic resonance do? Nature 391, 344 (1998).

    Article  Google Scholar 

  17. Hänggi, P. Stochastic resonance in biology: how noise can enhance detection of weak signals and help improve biological information processing. Chemphyschem 3, 285–290 (2002).

    Article  PubMed  Google Scholar 

  18. Ward, L. M. Dynamical Cognitive Science (MIT Press, Massachusetts, 2002).

    Google Scholar 

  19. Moss, F., Ward, L. M. & Sannita, W. G. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 115, 267–281 (2004).

    Article  PubMed  Google Scholar 

  20. McDonnell, M. D., Stocks, N. G., Pearce, C. E. M. & Abbott, D. Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantisation (Cambridge Univ. Press, New York, 2008).

    Book  Google Scholar 

  21. Prescott, S. A. & Koninck, Y. D. Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc. Natl Acad. Sci. USA 100, 2076–2081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herz, A. V. M., Gollisch, T., Machens, C. K. & Jaeger, D. Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314, 80–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kumar, A., Rotter, S. & Aertsen, A. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nature Rev. Neurosci. 11, 615–627 (2010).

    Article  CAS  Google Scholar 

  24. Manwani, A. & Koch, C. Detecting and estimating signals in noisy cable structures, I: neuronal noise sources. Neural Comput. 11, 1797–1829 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Rolls, E. T. & G., D. The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function (Oxford Univ. Press, New York, 2010).

    Book  Google Scholar 

  26. Galambos, R. & Makeig, S. Physiological studies of central masking in man. I: the effects of noise on the 40Hz steady-state response. J. Acoust. Soc. Am. 92, 2684–2690 (1992).

    Google Scholar 

  27. Douglass, J. K., Wilkens, L., Pantazelou, E. & Moss, F. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–339 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Braun, H. A., Wissing, H., Schäfer, K. & Hirsch, M. C. Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367, 270–273 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Levin, J. E. & Miller, J. P. Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380, 165–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Cordo, P. et al. Noise in human muscle spindles. Nature 383, 769–770 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Collins, J. J., Imhoff, T. T. & Grigg, P. Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J. Neurophysiol. 76, 642–645 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Morse, R. P. & Evans, E. F. Enhancement of vowel coding for cochlear implants by addition of noise. Nature Med. 2, 928–932 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Gluckman, B. J. et al. Stochastic resonance in a neuronal network from mammalian brain. Phys. Rev. Lett. 77, 4098–4101 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Jaramillo, F. & Wiesenfeld, K. Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system. Nature Neurosci. 1, 384–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Ivey, C., Apkarian, A. V. & Chialvo, D. R. Noise-induced tuning curve changes in mechanoreceptors. J. Neurophysiol. 79, 1879–1890 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Srebro, R. & Malladi, P. Stochastic resonance of the visually evoked potential. Phys. Rev. E 59, 2566–2570 (1999).

    Article  CAS  Google Scholar 

  37. Russell, D. F., Wilkens, L. A. & Moss, F. Use of behavioural stochastic resonance by paddle fish for feeding. Nature 402, 291–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Nozaki, D., Mar., D. J., Grigg, P. & Collins, J. J. Effects of colored noise on stochastic resonance in sensory neurons. Phys. Rev. Lett. 82, 2402–2405 (1999).

    Article  CAS  Google Scholar 

  39. Stufflebeam, S. M., Poeppel, D. & Roberts, T. P. L. Temporal encoding in auditory evoked neuromagnetic fields: stochastic resonance. Neuroreport 11, 4081–4085 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Hidaka, I., Nozaki, D. & Yamamoto, Y. Functional stochastic resonance in the human brain: noise induced sensitization of baroreflex system. Phys. Rev. Lett. 85, 3740–3743 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Stacey, W. C. & Durand, D. M. Stochastic resonance improves signal detection in hippocampal CA1 neurons. J. Neurophysiol. 83, 1394–1402 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Mori, T. & Kai, S. Noise-induced entrainment and stochastic resonance in human brain waves. Phys. Rev. Lett. 88, 218101 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Manjarrez, E. et al. Internal stochastic resonance in the coherence between spinal and cortical neuronal ensembles in the cat. Neurosci. Lett. 326, 93–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Fallon, J. B., Carr, R. W. & Morgan, D. L. Stochastic resonance in muscle receptors. J. Neurophysiol. 91 2429–2436 (2004).

    Article  PubMed  Google Scholar 

  45. Kitajo, K. et al. Noise-induced large-scale phase synchronization of human-brain activity associated with behavioural stochastic resonance. Europhys. Lett. 80, 400091–400096 (2007).

    Article  CAS  Google Scholar 

  46. Martínez, L., Pérez, T., Mirasso, C. R. & Manjarrez, E. Stochastic resonance in the motor system: effects of noise on the monosynaptic reflex pathway of the cat spinal cord. J. Neurophysiol. 97, 4007–4016 (2007).

    Article  PubMed  Google Scholar 

  47. Tanaka, K., Kawakatsu, M. & Nemoto, I. Stochastic resonance in auditory steady state responses in a magnetoencephalogram. Clin. Neurophysiol. 119, 2104–2110 (2008).

    Article  PubMed  Google Scholar 

  48. Goris, R. L. T., Zaenen, P. & Wagemans, J. Some observations on contrast detection in noise. J. Vis. 8, 1–15 (2008).

    PubMed  Google Scholar 

  49. Ward, L. M., MacLean, S. E. & Kirschner, A. Stochastic resonance modulates neural synchronization within and between cortical sources. PLoS ONE 5, e14371 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marr, D. Vision (MIT Press, Massachusetts, 1982).

    Google Scholar 

  51. Sejnowski, T. J., Koch, C. & Churchland, P. S. Computational neuroscience. Science 241, 1299–1306 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Schwartz, E. L. Computational Neuroscience (MIT Press, Massachusetts, 1993).

    Google Scholar 

  53. Koch, C. Biophysics of Computation: Information Processing in Single Neurons (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  54. Abbott, L. F. Theoretical neuroscience rising. Neuron 60, 489–495 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. De Schutter, E. Why are computational neuroscience and systems biology so separate? PLoS Comput. Biol. 4, e1000978 (2008).

    Article  CAS  Google Scholar 

  56. Carnevale, N. T. & Hines, M. L. The NEURON Book (Cambridge Univ. Press, New York, 2005).

    Google Scholar 

  57. Marr, D. & Poggio, T. From Understanding Computation to Understanding Neural Circuitry (MIT Artificial Intelligence Laboratory, 1976).

    Google Scholar 

  58. Tuckwell, H. C. & Jost, J. Weak noise in neurons may powerfully inhibit the generation of repetitive spiking but not its propagation. PLoS Comput. Biol. 6, e1000794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tuckwell, H. C. & Jost, J. The effects of various spatial distributions of weak noise on rhythmic spiking. J. Comput. Neurosci. 30, 361–371 (2011).

    Article  PubMed  Google Scholar 

  60. Gutkin, B. S., Jost, J. & Tuckwell, H. C. Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise. Naturwissenschaften 96, 1091–1097 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic population codes. Nature Neurosci. 9, 1432–1438 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Churchland, P. S. & Sejnowski, T. J. Perspectives on cognitive neuroscience. Science 242, 741–745 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Collins, J. J., Chow, C. C., Capela, A. C. & Imhoff, T. T. Aperiodic stochastic resonance. Phys. Rev. E 54, 5575–5584 (1996).

    Article  CAS  Google Scholar 

  64. Chapeau-Blondeau, F., Godivier, X. & Chambet, N. Stochastic resonance in a neuron model that transmits spike trains. Phys. Rev. E 53, 1273–1275 (1996).

    Article  CAS  Google Scholar 

  65. Anastassiou, C. A., Perin, R., Markram, H. & Koch, C. Ephaptic coupling of cortical neurons. Nature Neurosci. 14, 217–223 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Gabbiani, F., Krapp, H. G., Koch, C. & Laurent, G. Multiplicative computation in a visual neuron sensitive to looming. Nature 420, 320–324 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Lewis, E. R. & Henry, K. R. Nonlinear effects of noise on phase-locked cochlear-nerve responses to sinusoidal stimuli. Hear. Res. 92, 1–16 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Lewis, E. R., Henry, K. R. & Yamada, W. M. Essential roles of noise in neural coding and in studies of neural coding. Biosystems 58, 109–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O. & Kötter, R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl Acad. Sci. USA 106, 10302–10307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pikovsky, A. S. & Kurths, J. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775–778 (1997).

    Article  CAS  Google Scholar 

  71. Lee, S. G., Neiman, A. & Kim, S. Coherence resonance in a Hodgkin-Huxley neuron. Phys. Rev. E 57, 3292–3297 (1998).

    Article  CAS  Google Scholar 

  72. Stein, R. B., Gossen, E. R. & Jones, K. E. Neuronal variability: noise or part of the signal? Nature Rev. Neurosci. 6, 389–397 (2005).

    Article  CAS  Google Scholar 

  73. Cecchi, G. et al. Noise in neurons is message dependent. Proc. Natl Acad. Sci. USA 97, 5557–5561 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Burkitt, A. N. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95, 1–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Izhikevich, E. M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004).

    Article  PubMed  Google Scholar 

  76. Cafaro, J. & Rieke, F. Noise correlations improve response fidelity and stimulus encoding. Nature 468, 964–967 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mazzoni, A., Panzeri, S., Logothetis, N. K. & Brunel, N. Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput. Biol. 4, e1000239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Belitski, A. et al. Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J. Neurosci. 28, 5696–5709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bezrukov, S. M. Stochastic resonance as an inherent property of rate-modulated random series of events. Phys. Lett. A 248, 29–36 (1998).

    Article  CAS  Google Scholar 

  80. Bezrukov, S. M. & Voydanoy, I. Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378, 362–364 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Bezrukov, S. M. & Voydanoy, I. Signal transduction across alamethicin ion channels in the presence of noise. Biophys. J. 73, 2456–2464 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lugo, E., Doti, R. & Faubert, J. Ubiquitous crossmodal stochastic resonance in humans: auditory noise facilitates tactile, visual and proprioceptive sensations. PLoS ONE 3, e2860 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dees, N. D., Bahar, S. & Moss, F. Stochastic resonance and the evolution of Daphnia foraging strategy. Phys. Biol. 5, 044001 (2008).

    Article  PubMed  Google Scholar 

  84. Longtin, A. Synchronization of the stochastic Fitzhugh-Nagumo equations to periodic forcing. Nuovo Cimento C 17D, 835–846 (1995).

    Article  CAS  Google Scholar 

  85. Tuckwell, H. C. & Rodriguez, R. Analytical and simulation results for stochastic Fitzhugh-Nagumo neurons and neural networks. J. Computat. Neurosci. 5, 91–113 (1998).

    Article  CAS  Google Scholar 

  86. Lindner, B. & Schimansky-Geier, L. Coherence and stochastic resonance in a two-state system. Phys. Rev. E 61, 6103–6110 (2000).

    Article  CAS  Google Scholar 

  87. Izhikevich, E. M. & R. FitzHugh, R. FitzHugh-Nagumo model. Scholarpedia 1, 1349 (2006).

    Article  Google Scholar 

  88. Yoshida, M., Hayashi, H., Tateno, K. & Ishizuka, S. Stochastic resonance in the hippocampal CA3–CA1 model: a possible memory recall mechanism. Neural Netw. 15, 1171–1183 (2002).

    Article  PubMed  Google Scholar 

  89. McDonnell, M. D. & Stocks, N. G. Suprathreshold stochastic resonance. Scholarpedia 4, 6508 (2009).

    Article  Google Scholar 

  90. Longtin, A. Stochastic resonance in neuron models. J. Stat. Phys. 70, 309–327 (1993).

    Article  Google Scholar 

  91. Chialvo, D. R., Longtin, A. & Müller-Gerking, J. Stochastic resonance in models of neuronal ensembles. Phys. Rev. E 55, 1798–1808 (1997).

    Article  CAS  Google Scholar 

  92. Ashida, G. & Kubo, M. Suprathreshold stochastic resonance induced by ion channel fluctuation. Physica D 239, 327–334 (2010).

    Article  Google Scholar 

  93. Stocks, N. G. Suprathreshold stochastic resonance in multilevel threshold systems. Phys. Rev. Lett. 84, 2310–2313 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Holcman, D., Korkotian, E. & Segal, M. Calcium dynamics in dendritic spines, modeling and experiments. Cell Calcium 37, 467–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl Acad. Sci. USA 94, 719–723 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Traynelis, S. F. & Jaramillo, F. Getting the most out of noise in the central nervous system. Trends Neurosci. 21, 137–145 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Branco, T. & Staras, K. The probability of neurotransmitter release: variability and feedback control at single synapses. Nature Rev. Neurosci. 10, 373–383 (2009).

    Article  CAS  Google Scholar 

  98. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Fuhrmann, G., Cowan, A., Segev, I., Tsodyks, M. & Stricker, C. Multiple mechanisms govern the dynamics of depression at neocortical synapses of young rats. J. Physiol. 557, 415–438 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Abbott, L. F. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Lecar, H. & Nossal, R. Theory of threshold fluctuations in nerves. II. Analysis of various sources of membrane noise. Biophys. J. 11, 1068–1084 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Diba, K., Lester, H. A. & Koch, C. Intrinsic noise in cultured hippocampal neurons: experiment and modeling. J. Neurosci. 24, 9723–9733 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Haider, B. & McCormick, D. A. Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62, 171–189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Padmanabhan, K. & Urban, N. N. Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nature Neurosci. 13, 1276–1282 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Tessone, C. J., Mirasso, C. R., Toral, R. & Gunton, J. D. Diversity-induced resonance. Phys. Rev. Lett. 97, 194101 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  Google Scholar 

  107. Lillywhite, P. G. & Laughlin, S. B. Transducer noise in a photoreceptor. Nature 277, 569–572 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an Australian Research Fellowship from the Australian Research Council (project number DP1093425) to M.D.M., and a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to L.M.W. The authors would like to acknowledge the influence and reflections of numerous colleagues with whom they have discussed stochastic resonance. In particular, S. A. Prescott of the University of Pittsburgh, USA, for insightful dialogue on several aspects of this paper, and the anonymous referees for exhorting the necessity for new terminology. This article is dedicated to the memory of Frank E. Moss, pioneer of the study of stochastic resonance in living systems, an inspiration and a friend, who passed away January 4th 2011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark D. McDonnell or Lawrence M. Ward.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1

Extended Table of Reports of Stochastic Resonance in Neurobiological Experiments (PDF 396 kb)

Supplementary information S2

Extended Table of Reports of Stochastic Resonance and Stochastic Facilitation in Neuronal Models (PDF 441 kb)

Related links

Related links

FURTHER INFORMATION

Mark D. McDonnell's homepage

Lawrence M. Ward's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonnell, M., Ward, L. The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 12, 415–425 (2011). https://doi.org/10.1038/nrn3061

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3061

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing