Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The nature of feelings: evolutionary and neurobiological origins

Abstract

Feelings are mental experiences of body states. They signify physiological need (for example, hunger), tissue injury (for example, pain), optimal function (for example, well-being), threats to the organism (for example, fear or anger) or specific social interactions (for example, compassion, gratitude or love). Feelings constitute a crucial component of the mechanisms of life regulation, from simple to complex. Their neural substrates can be found at all levels of the nervous system, from individual neurons to subcortical nuclei and cortical regions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interoceptive pathways and nuclei involved in sensing and mapping body states and generating feelings.
Figure 2: Patient B shows complete destruction of insular cortices in anatomical MRI scans.
Figure 3: Axonal membrane receptors in unmyelinated and myelinated fibres.

Similar content being viewed by others

References

  1. Plato. Symposium (Kessinger, 2010).

  2. Heaton, K. W. Body-conscious Shakespeare: sensory disturbances in troubled characters. Med. Humanit. 37, 97–102 (2011).

    Article  PubMed  Google Scholar 

  3. Morrisj, J. S. How do you feel? Trends Cogn. Sci. 6, 317–319 (2002).

    Article  PubMed  Google Scholar 

  4. Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nature Rev. Neurosci. 3, 655–666 (2002).

    Article  CAS  Google Scholar 

  5. Damasio, A. Self Comes to Mind: Constructing the Conscious Brain (Pantheon, 2010; Vintage, 2011).

    Google Scholar 

  6. Ortony, A. & Turner, T. J. What's basic about basic emotions? Psychol. Rev. 97, 315–331 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Sorensen, L. B., Moller, P., Flint, A., Martens, M. & Raben, A. Effect of sensory perception of foods on appetite and food intake: a review of studies on humans. Int. J. Obes. 27, 1152–1166 (2003).

    Article  CAS  Google Scholar 

  8. DeWall, C. N. & Baumeister, R. F. Alone but feeling no pain: effects of social exclusion on physical pain tolerance and pain threshold, affective forecasting, and interpersonal empathy. J. Pers. Soc. Psychol. 91, 1–15 (2006).

    Article  PubMed  Google Scholar 

  9. Frijda, N. H., Kuipers, P. & ter Schure, E. Relations among emotion, appraisal, and emotional action readiness. J. Pers. Soc. Psychol. 57, 212–228 (1989).

    Article  Google Scholar 

  10. Wicker, B. et al. Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron 40, 655–664 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Schnall, S., Haidt, J., Clore, G. L. & Jordan, A. H. Disgust as embodied moral judgment. Pers. Soc. Psychol. Bull. 34, 1096–1109 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goetz, J. L., Keltner, D. & Simon-Thomas, E. Compassion: an evolutionary analysis and empirical review. Psychol. Bull. 136, 351–374 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Keltner, D., Ellsworth, P. C. & Edwards, K. Beyond simple pessimism: effects of sadness and anger on social perception. J. Pers Soc. Psychol. 64, 740–752 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Algoe, S. B. & Haidt, J. Witnessing excellence in action: the 'other-praising' emotions of elevation, gratitude, and admiration. J. Posit. Psychol. 4, 105–127 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kringelbach, M. L. & Berridge, K. C. Pleasures of the Brain (Oxford Univ. Press, 2009).

    Google Scholar 

  16. James, W. The Principles of Psychology (Henry Holt and Company, 1890).

    Google Scholar 

  17. Damasio, A. The Feeling of What Happens: Body and Emotion in the Making of Consciousness (Harcourt, 1999).

    Google Scholar 

  18. Hohmann, G. W. Some effects of spinal cord lesions on experienced emotional feelings. Psychophysiology 3, 143–156 (1966).

    Article  CAS  PubMed  Google Scholar 

  19. Wiens, S., Mezzacappa, E. S. & Katkin, E. S. Heartbeat detection and the experience of emotions. Cogn. Emotion 14, 417–427 (2000).

    Article  Google Scholar 

  20. Montoya, P. & Schandry, R. Emotional experience and heartbeat perception in patients with spinal cord injury and control subjects. J. Psychophysiol. 8, 289–296 (1994).

    Google Scholar 

  21. Kandel, E. R., Schwartz, J. H. & Jessell, T. M., Siegelbaum, S. A. & Hudspeth, A. J. Principles of Neural Science 5th edn (The McGraw-Hill Companies, 2012).

    Google Scholar 

  22. Kobatake, E. & Tanaka, K. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J. Neurophysiol. 71, 856–867 (2012).

    Article  Google Scholar 

  23. Gao, X. W., Podladchikova, L., Shaposhnikov, D., Hong, K. & Shevtsova, N. Recognition of traffic signs based on their colour and shape features extracted using human vision models. J. Vis. Commun. Image R. 17, 675–685 (2006).

    Article  Google Scholar 

  24. Lowe, D. G. Object recognition from local scale-invariant features. in Proc. of the Seventh IEEE International Conference on Computer Vision Vol. 2 1150–1157 (IEEE, 1999).

    Chapter  Google Scholar 

  25. Allman, J. M. & Kaas, J. H. A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). Brain Res. 31, 85–105 (1971).

    Article  CAS  PubMed  Google Scholar 

  26. Evans, E. F., Ross, H. F. & Whitfield, I. C. The spatial distribution of unit characteristic frequency in the primary auditory cortex of the cat. J. Physiol. 179, 238–247 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roe, A. W., Pallas, S. L., Hahm, J. O. & Sur, M. A map of visual space induced in primary auditory cortex. Science 250, 818–820 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Udin, S. B. & Fawcett, J. W. Formation of topographic maps. Annu. Rev. Neurosci. 11, 289–327 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Taylor, L. A. & Rachman, S. J. The effects of blood sugar level changes on cognitive function, affective state, and somatic symptoms. J. Behav. Med. 11, 279–291 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Scammell, T. E. & Winrow, C. J. Orexin receptors: pharmacology and therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 51, 243–266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wardle, J. Hunger and satiety: a multidimensional assessment of responses to caloric loads. Physiol. Behav. 40, 577–582 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Monello, L. F. & Mayer, J. Hunger and satiety sensations in men, women, boys, and girls. Am. J. Clin. Nutr. 20, 253–261 (1967).

    Article  CAS  PubMed  Google Scholar 

  33. Czura, C. J. & Tracey, K. J. Autonomic neural regulation of immunity. J. Intern. Med. 257, 156–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Bauer, R. M. Autonomic recognition of names and faces in prosopagnosia: a neuropsychological application of the Guilty Knowledge Test. Neuropsychologia 22, 457–469 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Craig, A. D. A new view of pain as a homeostatic emotion. Trends Neurosci. 26, 303–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Porges, S. W. Neuroception: a subconscious system for detecting threats and safety. Zero Three 24, 19–24 (2004).

    Google Scholar 

  37. Ekman, P., Levenson, R. W. & Friesen, W. V. Autonomic nervous system activity distinguishes among emotions. Science 221, 1208–1210 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Deciding advantageously before knowing the advantageous strategy. Science 275, 1293–1295 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Gabella, G. Encyclopedia of Life Sciences (John Wiley & Sons, 2001).

    Google Scholar 

  40. Tranel, D. & Damasio, A. R. Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science 228, 1453–1454 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Damasio, A. Looking for Spinoza: Joy, Sorrow, and the Feeling Brain (Harcourt, 2003).

    Google Scholar 

  42. Panksepp, J. Affective Neuroscience: The Foundations of Human and Animal Emotions (Oxford Univ. Press, 1998).

    Google Scholar 

  43. Denton, D. A. The Primordial Emotions: The Dawning of Consciousness (Oxford Univ. Press, 2005).

    Google Scholar 

  44. Cannon, W. B. The Wisdom of the Body. (W. W. Norton & Co, 1932).

    Book  Google Scholar 

  45. Damasio, A. Neural basis of emotions. Scholarpedia 6, 1804 (2011).

    Article  Google Scholar 

  46. Wright, R. The Moral Animal: The New Science of Evolutionary Psychology (Pantheon/Vintage, 1994).

    Google Scholar 

  47. Sanabria, F. Tools, drugs, and signals in the road from evolution to money. Behav. Brain Sci. 29, 193–194 (2012).

    Article  Google Scholar 

  48. Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. The human amygdala and the induction and experience of fear. Curr. Biol. 21, 34–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Blair, R. J. Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy. J. Neurol. Neurosurg. Psychiatry 71, 727–731 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fanselow, M. S. Conditioned fear-induced opiate analgesia: a competing motivational state theory of stress analgesia. Ann. NY Acad. Sci. 467, 40–54 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. Kalin, N. H., Shelton, S. E. & Davidson, R. J. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J. Neurosci. 24, 5506–5515 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372, 669–672 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. LeDoux, J. E. Emotion: clues from the brain. Annu. Rev. Psychol. 46, 209–235 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Maclennan, B. Protophenomena and their neurodynamical correlates. J. Conscious. Stud. 3, 409–424 (1996).

    Google Scholar 

  55. Crick, F. H. C. The Astonishing Hypothesis: The Scientific Search for the Soul (Charles Scribner's Sons, 1994).

    Google Scholar 

  56. Llinás, R. R. I of the Vortex: From Neurons to Self (MIT Press, 2001).

    Book  Google Scholar 

  57. Pessoa, L. How do emotion and motivation direct executive control? Trends Cogn. Sci. 13, 160–166 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Damasio, A. et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neurosci. 3, 1049–1056 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Lang, P. J. & Davis, M. Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog. Brain Res. 156, 3–29 (2006).

    Article  PubMed  Google Scholar 

  60. Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nature Rev. Neurosci. 10, 59–70 (2009).

    Article  CAS  Google Scholar 

  61. Parvizi, J. & Damasio, A. Consciousness and the brainstem. Cognition 79, 135–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Risold, P. Y., Thompson, R. H. & Swanson, L. W. The structural organization of connections between hypothalamus and cerebral cortex. Brain Res. Brain Res. Rev. 24, 197–254 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Buhle, J. T. et al. Common representation of pain and negative emotion in the midbrain periaqueductal gray. Soc. Cogn. Affect. Neurosci. 24 Mar 2012 (doi:10.1093/scan/nss038).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Farkas, E., Jansen, A. S. & Loewy, A. D. Periaqueductal gray matter projection to vagal preganglionic neurons and the nucleus tractus solitarius. Brain Res. 764, 257–261 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Hamilton, B. L. Projections of the nuclei of the periaqueductal gray matter in the cat. J. Comp. Neurol. 152, 45–58 (1973).

    Article  CAS  PubMed  Google Scholar 

  66. Herbert, H. & Saper, C. B. Cholecystokinin-, galanin-, and corticotropin-releasing factor-like immunoreactive projections from the nucleus of the solitary tract to the parabrachial nucleus in the rat. J. Comp. Neurol. 293, 581–598 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Herbert, H., Moga, M. M. & Saper, C. B. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J. Comp. Neurol. 293, 540–580 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Bester, H., Besson, J. M. & Bernard, J. F. Organization of efferent projections from the parabrachial area to the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J. Comp. Neurol. 383, 245–281 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Ricardo, J. A. & Koh, E. T. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 153, 1–26 (1978).

    Article  CAS  PubMed  Google Scholar 

  70. Cameron, O. G. Interoception: the inside story—a model for psychosomatic processes. Psychosom. Med. 63, 697–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Keay, K. A., Clement, C. I., Owler, B., Depaulis, A. & Bandler, R. Convergence of deep somatic and visceral nociceptive information onto a discrete ventrolateral midbrain periaqueductal gray region. Neuroscience 61, 727–732 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Rinaman, L. Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am. J. Physiol. 277, R582–R590 (1999).

    CAS  PubMed  Google Scholar 

  73. Berridge, K. C. & Robinson, T. E. Parsing reward. Trends Neurosci. 26, 507–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Damasio, A. Descartes' Error: Emotion, Reason, and the Human Brain (Penguin, 2005).

    Google Scholar 

  75. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Dum, R. P., Levinthal, D. J. & Strick, P. L. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J. Neurosci. 29, 14223–14235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shackman, A. J. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Rev. Neurosci. 12, 154–167 (2011).

    Article  CAS  Google Scholar 

  78. Olausson, H. et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nature Neurosci. 5, 900–904 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Craig, A. D. A new version of the thalamic disinhibition hypothesis of central pain. Pain Forum 7, 1–14 (1998).

    Article  Google Scholar 

  80. Craig, A. D. Propriospinal input to thoracolumbar sympathetic nuclei from cervical and lumbar lamina I neurons in the cat and the monkey. J. Comp. Neurol. 331, 517–530 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Craig, A. D. Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J. Comp. Neurol. 361, 225–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Craig, A. D. An ascending general homeostatic afferent pathway originating in lamina I. Prog. Brain Res. 107, 225–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Craig, A. D. The functional anatomy of lamina I and its role in post-stroke central pain. Prog. Brain Res. 129, 137–151 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Craig, A. D., Chen, K., Bandy, D. & Reiman, E. M. Thermosensory activation of insular cortex. Nature Neurosci. 3, 184–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Beckstead, R. M. & Norgren, R. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J. Comp. Neurol. 184, 455–472 (1979).

    Article  CAS  PubMed  Google Scholar 

  86. Kalia, M. & Mesulam, M. M. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J. Comp. Neurol. 193, 435–465 (1980).

    Article  CAS  PubMed  Google Scholar 

  87. Kalia, M. & Mesulam, M. M. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J. Comp. Neurol. 193, 467–508 (1980).

    Article  CAS  PubMed  Google Scholar 

  88. Shapiro, R. E. & Miselis, R. R. The central neural connections of the area postrema of the rat. J. Comp. Neurol. 234, 344–364 (1985).

    Article  CAS  PubMed  Google Scholar 

  89. Klop, E. M., Mouton, L. J., Hulsebosch, R., Boers, J. & Holstege, G. In cat four times as many lamina I neurons project to the parabrachial nuclei and twice as many to the periaqueductal gray as to the thalamus. Neuroscience 134, 189–197 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Krukoff, T. L., Harris, K. H. & Jhamandas, J. H. Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Res. Bull. 30, 163–172 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Mantyh, P. W. Connections of midbrain periaqueductal gray in the monkey. II. Descending efferent projections. J. Neurophysiol. 49, 582–594 (1983).

    Article  CAS  PubMed  Google Scholar 

  92. Karimnamazi, H. & Travers, J. B. Differential projections from gustatory responsive regions of the parabrachial nucleus to the medulla and forebrain. Brain Res. 813, 283–302 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Klier, E. M., Wang, H. & Crawford, J. D. The superior colliculus encodes gaze commands in retinal coordinates. Nature Neurosci. 4, 627–632 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Stein, B. E. Development of the superior colliculus. Annu. Rev. Neurosci. 7, 95–125 (1984).

    Article  CAS  PubMed  Google Scholar 

  95. Huerta, M. F. & Harting, J. K. Connectional organization of the superior colliculus. Trends Neurosci. 7, 286–289 (1984).

    Article  Google Scholar 

  96. May, P. J. The mammalian superior colliculus: laminar structure and connections. Prog. Brain Res. 151, 321–378 (2006).

    Article  PubMed  Google Scholar 

  97. Wurtz, R. H. & Albano, J. E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci. 3, 189–226 (1980).

    Article  CAS  PubMed  Google Scholar 

  98. Zenon, A. & Krauzlis, R. J. Attention deficits without cortical neuronal deficits. Nature 489, 434–437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Strehler, B. L. Where is the self? A neuroanatomical theory of consciousness. Synapse 7, 44–91 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Brooks, J. C. Nurmikko, T. J., Bimson, W. E., Singh, K. D. & Roberts, N. fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage 15, 293–301 (2002).

    Article  PubMed  Google Scholar 

  101. Mesulam, M. M. & Mufson, E. J. Insula of the old world monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. J. Comp. Neurol. 212, 1–22 (1982).

    Article  CAS  PubMed  Google Scholar 

  102. Mufson, E. J. & Mesulam, M. M. Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J. Comp. Neurol. 212, 23–37 (1982).

    Article  CAS  PubMed  Google Scholar 

  103. Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A. & Dolan, R. J. Neural systems supporting interoceptive awareness. Nature Neurosci. 7, 189–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Stephan, E. et al. Functional neuroimaging of gastric distention. J. Gastrointest. Surg. 7, 740–749 (2003).

    Article  PubMed  Google Scholar 

  105. Phillips, M. L. et al. The effect of negative emotional context on neural and behavioural responses to oesophageal stimulation. Brain 126, 669–684 (2003).

    Article  PubMed  Google Scholar 

  106. Kong, J. et al. Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Hum. Brain Mapp. 27, 715–721 (2006).

    Article  PubMed  Google Scholar 

  107. Singer, T. et al. Empathy for pain involves the affective but not sensory components of pain. Science 303, 1157–1162 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Henderson, L. A., Gandevia, S. C. & Macefield, V. G. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: a single-trial fMRI study. Pain 128, 20–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Hennenlotter, A. et al. A common neural basis for receptive and expressive communication of pleasant facial affect. Neuroimage 26, 581–591 (2005).

    Article  PubMed  Google Scholar 

  110. Jabbi, M., Swart, M. & Keysers, C. Empathy for positive and negative emotions in the gustatory cortex. Neuroimage 34, 1744–1753 (2007).

    Article  PubMed  Google Scholar 

  111. Craig, A. D. Significance of the insula for the evolution of human awareness of feelings from the body. Ann. NY Acad. Sci. 1225, 72–82 (2011).

    Article  PubMed  Google Scholar 

  112. Merker, B. Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. Behav. Brain Sci. 30, 63–81 (2007).

    Article  PubMed  Google Scholar 

  113. Shewmon, D. A., Holmes, G. L. & Byrne, P. A. Consciousness in congenitally decorticate children: developmental vegetative state as self-fulfilling prophecy. Dev. Med. Child Neurol. 41, 364–374 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Damasio, A., Damasio, H. & Tranel, D. Persistence of feelings and sentience after bilateral damage of the insula. Cereb. Cortex 3 Apr 2012 (doi:10.1093/cercor/bhs077).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Plum, F. & Posner, J. B. The Diagnosis of Stupor and Coma (Contemporary Neurology Vol.10) (Oxford Univ. Press, 1972).

    Google Scholar 

  116. Parvizi, J. & Damasio, A. R. Neuroanatomical correlates of brainstem coma. Brain 126, 1524–1536 (2003).

    Article  PubMed  Google Scholar 

  117. Panksepp, J. The basic emotional circuits of mammalian brains: do animals have affective lives? Neurosci. Biobehav Rev. 35, 1791–1804 (2011).

    Article  PubMed  Google Scholar 

  118. Bejjani, B. P. et al. Transient acute depression induced by high-frequency deep-brain stimulation. N. Engl. J. Med. 340, 1476–1480 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Schmahmann, J. D. & Leifer, D. Parietal pseudothalamic pain syndrome. Clinical features and anatomic correlates. Arch. Neurol. 49, 1032–1037 (1992).

    Article  CAS  PubMed  Google Scholar 

  120. Greenspan, J. D. & Winfield, J. A. Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum. Pain 50, 29–39 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Harrison, N. A., Gray, M. A., Gianaros, P. J. & Critchley, H. D. The embodiment of emotional feelings in the brain. J. Neurosci. 30, 12878–12884 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Piche, M., Arsenault, M. & Rainville, P. Dissection of perceptual, motor and autonomic components of brain activity evoked by noxious stimulation. Pain 149, 453–462 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Head, H. & Holmes, G. Sensory disturbances from cerebral lesions. Brain 34, 102–254 (1911).

    Article  Google Scholar 

  124. Mori, E. & Yamadori, A. Rejection behaviour: a human homologue of the abnormal behaviour of Denny-Brown and Chambers' monkey with bilateral parietal ablation. J. Neurol. Neurosurg. Psychiatry 52, 1260–1266 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Denny-Brown, D. & Chambers, R. A. The parietal lobe and behavior. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 36, 35–117 (1958).

    CAS  PubMed  Google Scholar 

  126. Steiner, J. E., Glaser, D., Hawilo, M. E. & Berridge, K. C. Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci. Biobehav. Rev. 25, 53–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Cook, N. D. The neuron-level phenomena underlying cognition and consciousness: synaptic activity and the action potential. Neuroscience 153, 556–570 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Murinson, B. B. & Griffin, J. W. C-fiber structure varies with location in peripheral nerve. J. Neuropathol. Exp. Neurol. 63, 246–254 (2004).

    Article  PubMed  Google Scholar 

  129. Harper, A. A. & Lawson, S. N. Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J. Physiol. 359, 31–46 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Foley, J. O. & DuBois, F. S. Quantitative studies of the vagus nerve in the cat. I. The ratio of sensory to motor fibers. J. Comp. Neurol. 67, 49–67 (2004).

    Article  Google Scholar 

  131. Hoffman, H. H. & Schnitzlein, H. N. The numbers of nerve fibers in the vagus nerve of man. Anat. Rec. 139, 429–435 (1961).

    Article  CAS  PubMed  Google Scholar 

  132. Friede, R. L. & Samorajski, T. Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves of mice. J. Comp. Neurol. 130, 223–231 (1967).

    Article  CAS  PubMed  Google Scholar 

  133. Prechtl, J. C. & Powley, T. L. The fiber composition of the abdominal vagus of the rat. Anat. Embryol. (Berl.) 181, 101–115 (1990).

    Article  CAS  Google Scholar 

  134. Koch, S. L. The structure of the third, fourth, fifth, sixth, ninth, eleventh and twelfth cranial nerves. J. Comp. Neurol. 26, 541–552 (1916).

    Article  Google Scholar 

  135. Vallbo, A. B., Olausson, H. & Wessberg, J. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J. Neurophysiol. 81, 2753–2763 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Mantyh, P. W. The midbrain periaqueductal gray in the rat, cat, and monkey: a Nissl, Weil, and Golgi analysis. J. Comp. Neurol. 204, 349–363 (1982).

    Article  CAS  PubMed  Google Scholar 

  137. Miller, A. J., McKoon, M., Pinneau, M. & Silverstein, R. Postnatal synaptic development of the rat. Brain Res. 284, 205–213 (1983).

    Article  CAS  PubMed  Google Scholar 

  138. Leslie, R. A. Comparative aspects of the area postrema: fine-structural considerations help to determine its function. Cell. Mol. Neurobiol. 6, 95–120 (1986).

    Article  CAS  PubMed  Google Scholar 

  139. Hartline, D. K. & Colman, D. R. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr. Biol. 17, R29–R35 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Waxman, S. G. Conduction in myelinated, unmyelinated, and demyelinated fibers. Arch. Neurol. 34, 585–589 (1977).

    Article  CAS  PubMed  Google Scholar 

  141. Harris, J. J. & Attwell, D. The energetics of CNS white matter. J. Neurosci. 32, 356–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee, S. et al. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nature Methods 9, 917–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bokil, H., Laaris, N., Blinder, K., Ennis, M. & Keller, A. Ephaptic interactions in the mammalian olfactory system. J. Neurosci. 21, RC173 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Meyer, R. A., Raja, S. N. & Campbell, J. N. Coupling of action potential activity between unmyelinated fibers in the peripheral nerve of monkey. Science 227, 184–187 (1985).

    Article  CAS  PubMed  Google Scholar 

  145. Eng, D. L. & Kocsis, J. D. Activity-dependent changes in extracellular potassium and excitability in turtle olfactory nerve. J. Neurophysiol. 57, 740–754 (1987).

    Article  CAS  PubMed  Google Scholar 

  146. Kamermans, M. & Fahrenfort, I. Ephaptic interactions within a chemical synapse: hemichannel-mediated ephaptic inhibition in the retina. Curr. Opin. Neurobiol. 14, 531–541 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Moller, A. R. Hemifacial spasm: ephaptic transmission or hyperexcitability of the facial motor nucleus? Exp. Neurol. 98, 110–119 (1987).

    Article  CAS  PubMed  Google Scholar 

  148. Rasminsky, M. Ephaptic transmission between single nerve fibres in the spinal nerve roots of dystrophic mice. J. Physiol. 305, 151–169 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Crochet, S. & Petersen, C. C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neurosci. 9, 608–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Aur, D. Connolly, C. I. & Jog, M. S. Computing information in neural spikes. Neural Process. Lett. 23, 183–199 (2006).

    Article  Google Scholar 

  151. Pearce, T., Verschure, P., White, J. & Kauer, J. Robust stimulus encoding in olfactory processing: hyperacuity and efficient signal transmission. Lect. Notes Comput. Sci. 2036, 461–479 (2001).

    Article  Google Scholar 

  152. Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Lang, P. M. et al. Characterization of neuronal nicotinic acetylcholine receptors in the membrane of unmyelinated human C-fiber axons by in vitro studies. J. Neurophysiol. 90, 3295–3303 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Lang, P. M., Tracey, D. J., Irnich, D., Sippel, W. & Grafe, P. Activation of adenosine and P2Y receptors by ATP in human peripheral nerve. Naunyn Schmiedebergs Arch. Pharmacol. 366, 449–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Irnich, D., Tracey, D. J., Polten, J., Burgstahler, R. & Grafe, P. ATP stimulates peripheral axons in human, rat and mouse — differential involvement of A2B adenosine and P2X purinergic receptors. Neuroscience 110, 123–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Lang, P. M., Moalem-Taylor, G., Tracey, D. J., Bostock, H. & Grafe, P. Activity-dependent modulation of axonal excitability in unmyelinated peripheral rat nerve fibers by the 5-HT3 serotonin receptor. J. Neurophysiol. 96, 2963–2971 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Lang, P. M. & Grafe, P. Chemosensitivity of unmyelinated axons in isolated human gastric vagus nerve. Auton. Neurosci. 136, 100–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Engel, A. K., Fries, P., Konig, P., Brecht, M. & Singer, W. Temporal binding, binocular rivalry, and consciousness. Consci. Cogn. 8, 128–151 (1999).

    Article  CAS  Google Scholar 

  159. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65, 111–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Gybels, J., Handwerker, H. O. & Van Hees, J. A comparison between the discharges of human nociceptive nerve fibres and the subject's ratings of his sensations. J. Physiol. 292, 193–206 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Maslow, A. H. A theory of human motivation. Psychol. Rev. 50, 370–396 (1943).

    Article  Google Scholar 

  162. Berridge, K. C. Motivation concepts in behavioral neuroscience. Physiol. Behav. 81, 179–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Immordino-Yang, M. H., McColl, A., Damasio, H. & Damasio, A. Neural correlates of admiration and compassion. Proc. Natl Acad. Sci. USA 106, 8021–8026 (2012).

    Article  Google Scholar 

  164. Keltner, D & Buswell, B. N. Evidence for the distinctness of embarrassment, shame, and guilt: a study of recalled antecedents and facial expressions of emotion. Cogn. Emot. 10, 155–172 (1996).

    Article  Google Scholar 

  165. Ekman, P. & Friesen, W. V. Constants across cultures in the face and emotion. J. Pers Soc. Psychol. 17, 124–129 (1971).

    Article  CAS  PubMed  Google Scholar 

  166. LeDoux, J. E. The Emotional Brain: The Mysterious Underpinnings of Emotional Life (Simon & Schuster, 1996).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants to A.D. from the US National Institute of Neurological Disorders and Stroke (P50 NS19632) and The Mathers Foundation. We thank our colleagues H. Damasio, K. Man and J. Monterosso for insightful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Damasio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Antonio Damasio's homepage

Glossary

Action programmes

A set of innate physiological actions triggered by changes in the internal or external environments and aimed at maintaining or restoring homeostatic balance. The actions include changes in viscera and internal milieu (for example, alterations in heart rate, breathing and hormonal secretion), striated muscle (for example, facial expressions and running) and cognition (for example, focusing attention and favouring certain ideas and modes of thinking). Action programmes include drives and emotions. Changes in body state resulting from an action programme are sensed by the interoceptive system, displayed in sensory maps of the body and may be experienced consciously as feelings.

Drive

An action programme that is aimed at satisfying a basic, instinctual physiological need. Examples include hunger, thirst, libido, exploration and play, care of progeny and attachment to mates.

Emotions

Action programmes largely triggered by external stimuli (perceived or recalled). Examples include disgust, fear, anger, sadness, joy, shame, contempt, pride, compassion and admiration.

Ephaptic transmission

Sideways interneuronal communication that is mediated by extracellular current flow.

Feelings

The mental experiences that accompany body states. Action programmes (drives and emotions) can elicit feelings. Experiences related to exteroceptive senses (vision, hearing, touch, taste and smell) commonly cause emotions and ensuing feelings but in general are not felt in and of themselves. This definition also excludes the use of 'feeling' in the sense of 'thinking' or 'intuiting'.

Homeostasis

The process of maintaining the internal milieu physiological parameters (such as temperature, pH and nutrient levels) of a biological system within the range that facilitates survival and optimal function.

Interoceptive system

A collection of nerve pathways and CNS nuclei dedicated to detecting and mapping homeostatic signals (such as degrees of visceral muscle contraction and internal milieu chemical composition). The main interoceptive pathways are the vagus nerve and the lamina I (spinothalamocortical) pathway. The interoceptive system monitors the state of the body, orchestrates responses thereto and has a central role in generating feelings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damasio, A., Carvalho, G. The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci 14, 143–152 (2013). https://doi.org/10.1038/nrn3403

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing