Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The changing scene of amyotrophic lateral sclerosis

Key Points

  • Amyotrophic lateral sclerosis (ALS) is a clinical, genetic and pathogenic heterogenous condition. It lies at one end of a spectrum of a single biological condition, with FTLD at the other end. Many patients present symptoms and signs of both conditions.

  • ALS can be a proteinopathy, a ribonucleopathy or a mixture of both. The prion-like behaviour of some mutant proteins may contribute to the cellular spread of disease and thus to the progressive nature of ALS.

  • Non-canonical protein functions may contribute to the mechanism of ALS or the vulnerability of motor neurons in this disease.

  • ALS and FTLD join the list of the repeat expansion diseases: a hexanucleotide repeat in a non-coding sequence of C9ORF72 (chromosome 9 open reading frame 72) is the most prevalent identified cause of ALS.

  • Emerging data highlight the contribution of glial cells to motor neuron degeneration. Impaired oligodendrocyte-mediated trophic support has been shown to contribute to motor neuron degeneration.

  • Disease modifiers are factors that do not cause disease on their own but modify the phenotypic expression of the disorder. They may be targets for therapeutic intervention, even if the cause of the disease remains unknown. Targeting disease modifiers is important, as the cause of the sporadic form of neurodegenerative disorders, which is seen in a large majority of patients, is not known.

Abstract

Several recent breakthroughs have provided notable insights into the pathogenesis of amyotrophic lateral sclerosis (ALS), with some even shifting our thinking about this neurodegenerative disease and raising the question as to whether this disorder is a proteinopathy, a ribonucleopathy or both. In addition, these breakthroughs have revealed mechanistic links between ALS and frontotemporal dementia, as well as between ALS and other neurodegenerative diseases, such as the cerebellar atrophies, myotonic dystrophy and inclusion body myositis. Here, we summarize the new findings in ALS research, discuss what they have taught us about this disease and examine issues that are still outstanding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of events in the pathogenesis of amyotrophic lateral sclerosis.
Figure 2: Possible pathogenic mechanism of misfolded SOD1-induced toxicity.
Figure 3: Possible pathogenic mechanism of mutant TDP43.
Figure 4: Possible pathogenic mechanism of motor neuron degeneration induced by the C9ORF72 repeat expansion.

Similar content being viewed by others

References

  1. Saxena, S. & Caroni, P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71, 35–48 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Frey, D. et al. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J. Neurosci. 20, 2534–2542 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fischer, L. R. et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol. 185, 232–240 (2004).

    Article  PubMed  Google Scholar 

  4. Ringholz, G. M. et al. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65, 586–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Andersen, P. M. & Al-Chalabi, A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nature Rev. Neurol. 7, 603–615 (2011).

    Article  CAS  Google Scholar 

  6. Williamson, T. L. & Cleveland, D. W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neurosci. 2, 50–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Amendola, J. et al. Altered sensorimotor development in a transgenic mouse model of amyotrophic lateral sclerosis. Eur. J. Neurosci. 20, 2822–2826 (2004).

    Article  PubMed  Google Scholar 

  8. van Zundert, B. et al. Neonatal neuronal circuitry shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J. Neurosci. 28, 10864–10874 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bories, C. et al. Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis. Eur. J. Neurosci. 25, 451–459 (2007).

    Article  PubMed  Google Scholar 

  10. Regal, L. et al. The G93C mutation in superoxide dismutase 1: clinicopathologic phenotype and prognosis. Arch. Neurol. 63, 262–267 (2006).

    Article  PubMed  Google Scholar 

  11. Philips, T. & Robberecht, W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 10, 253–263 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006). This is this first study to link ALS with FTLD, and identifies TDP43 as a major disease protein in the ubiquitin-positive, tau-negative inclusions of affected tissue of patients with ALS and patients with FTLD. The subsequent identification of C9ORF72 as a major disease-causing protein in both ALS and FTLD confirmed this concept.

    Article  CAS  PubMed  Google Scholar 

  13. Bendotti, C. et al. Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. Prog. Neurobiol. 97, 101–126 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Basso, M. et al. Insoluble mutant SOD1 is partly oligoubiquitinated in amyotrophic lateral sclerosis mice. J. Biol. Chem. 281, 33325–33335 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, S. et al. Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol. 22, 110–116 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki, S. Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 70, 349–359 (2011).

    Article  PubMed  Google Scholar 

  17. Morimoto, N. et al. Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res. 1167, 112–117 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Saxena, S., E. Cabuy & Caroni, P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nature Neurosci. 12, 627–636 (2009). The authors describe the early involvement of endoplasmic reticulum stress in the selective vulnerability of motor neurons. Endoplasmic reticulum stress is one of the earliest pathological changes associated with motor neurons in ALS. It occurs well before muscular denervation and axonal retraction.

    Article  CAS  PubMed  Google Scholar 

  19. Ilieva, H., Polymenidou, M. & Cleveland, D. W. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ezzi, S. A., Urushitani, M. & Julien, J. P. Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation. J. Neurochem. 102, 170–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Bosco, D. A. et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nature Neurosci. 13, 1396–1403 (2010). This paper suggests that wild-type SOD1 can acquire a specific pathological conformation that is shared with mutant SOD1 and could therefore be implicated in SALS, indicating that there is a SOD1-dependent pathway common to both SALS and FALS. These findings are still controversial, as they could not be reproduced by other studies (see reference 23).

    Article  CAS  PubMed  Google Scholar 

  22. Rakhit, R. et al. Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J. Biol. Chem. 277, 47551–47556 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Brotherton, T. E. et al. Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. Proc. Natl Acad. Sci. USA 109, 5505–5510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deng, H. X. et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477, 211–215 (2011). This is the first paper to describe UBQLN2 mutations as a cause of ALS. Interestingly, ubiquilin pathology was not restricted to patients with ALS who had UBQLN2 mutations but also to SALS cases in which UBQLN2-positive inclusions could be identified in the brain and spinal cord.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bertram, L. et al. Family-based association between Alzheimer's disease and variants in UBQLN1. N. Engl. J. Med. 352, 884–894 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Ko, H. S. et al. Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains. FEBS Lett. 566, 110–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Williams, K. L. et al. UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol. Aging 33, 2527.e3–2527.e10 (2012).

    Article  CAS  Google Scholar 

  28. Synofzik, M. et al. Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype. Neurobiol. Aging 33, 2949.e13–2949.e17 (2012).

    Article  CAS  Google Scholar 

  29. Fecto, F. et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol. 68, 1440–1446 (2011).

    Article  PubMed  Google Scholar 

  30. Johnson, J. O. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nature Genet. 36, 377–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nature Cell Biol. 14, 117–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Song, C., Wang, Q. & Li, C. C. ATPase activity of p97-valosin-containing protein (VCP). D2 mediates the major enzyme activity, and D1 contributes to the heat-induced activity. J. Biol. Chem. 278, 3648–3655 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Parkinson, N. et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67, 1074–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Chow, C. Y. et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am. J. Hum. Genet. 84, 85–88 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genet. 37, 806–808 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, G. et al. Optineurin negatively regulates TNFα induced NF-κB activation by competing with NEMO for ubiquitinated RIP. Curr. Biol. 17, 1438–1443 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Deng, H. X. et al. Differential involvement of optineurin in amyotrophic lateral sclerosis with or without SOD1 mutations. Arch. Neurol. 68, 1057–1061 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gary, J. D. et al. Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4 a polyphosphoinositide phosphatase family member. Mol. Biol. Cell 13, 1238–1251 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kraft, C., Peter, M. & Hofmann, K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nature Cell Biol. 12, 836–841 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Tashiro, Y. et al. Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis. J. Biol. Chem. 287, 42984–42994 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sendtner, M. Therapy development in spinal muscular atrophy. Nature Neurosci. 13, 795–799 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Burghes, A. H. & Beattie, C. E. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nature Rev. Neurosci. 10, 597–609 (2009).

    Article  CAS  Google Scholar 

  46. Schrank, B. et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc. Natl Acad. Sci. USA 94, 9920–9925 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, H. F. et al. Valosin-containing protein and neurofibromin interact to regulate dendritic spine density. J. Clin. Invest. 121, 4820–4837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lemmens, R. et al. RNA metabolism and the pathogenesis of motor neuron diseases. Trends Neurosci. 33, 249–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rutherford, N. J. et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 4, e1000193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, E. B., Lee, V. M. & Trojanowski, J. Q. Gains or losses: molecular mechanisms of TDP-43-mediated neurodegeneration. Nature Rev. Neurosci. 13, 38–50 (2012).

    Article  CAS  Google Scholar 

  52. Buratti, E. et al. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 20, 1774–1784 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Buratti, E. et al. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. Am. J. Hum. Genet. 74, 1322–1325 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neurosci. 14, 459–468 (2011). These authors used iCLIP (individual-nucleotide resolution UV cross-linking and immunoprecipitation) in combination with high-throughput sequencing to find binding sites for TDP43 in >6,000 genes, including some long pre-mRNAs that are enriched in motor neurons. Upon TDP43 depletion, changes in specific RNA abundance and splicing patterns were measured, which could potentially underlie the loss of TDP43 function in ALS.

    Article  CAS  PubMed  Google Scholar 

  55. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nature Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Kawahara, Y. & Mieda-Sato, A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl Acad. Sci. USA 109, 3347–3352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buratti, E. et al. Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J. 277, 2268–2281 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Dewey, C. M. et al. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol. Cell. Biol. 31, 1098–1108 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. McDonald, K. K. et al. TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum. Mol. Genet. 20, 1400–1410 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Shorter, J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS ONE 6, e26319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dewey, C. M. et al. TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res. 1462, 16–25 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kedersha, N. et al. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J. Cell Biol. 151, 1257–1268 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kedersha, N. L. et al. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431–1442 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kimball, S. R. et al. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am. J. Physiol. Cell Physiol. 284, C273–C284 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Liu-Yesucevitz, L. et al. Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS ONE 5, e13250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Johnson, B. S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arnold, E. S. et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl Acad. Sci. USA 110, E736–E745 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010). Using a yeast toxicity screen, the authors found that a yeast orthologue for ATXN2 is a strong modifier of TDP43-mediated toxicity. In patients with ALS, intermediate-length ATXN2 poly-Q expansions were associated with disease, providing a link between ALS and other polyQ diseases such as myotonic dystrophy type 1 and SCA2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Voigt, A. et al. TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS ONE 5, e12247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ritson, G. P. et al. TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J. Neurosci. 30, 7729–7739 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ayala, Y. M. et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 30, 277–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Chartier-Harlin, M. C. et al. α-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet. 38, 24–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Swarup, V. et al. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J. Exp. Med. 208, 2429–2447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sanpei, K. et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genet. 14, 277–284 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Van Damme, P. et al. Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 76, 2066–2072 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Conforti, F. L. et al. Ataxin-1 and ataxin-2 intermediate-length PolyQ expansions in amyotrophic lateral sclerosis. Neurology 79, 2315–2320 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Lee, T. et al. Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum. Mol. Genet. 20, 1697–1700 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gispert, S. et al. The modulation of amyotrophic lateral sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect. Neurobiol. Dis. 45, 356–361 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Yu, Z. et al. PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats. PLoS ONE 6, e17951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hart, M. P. & Gitler, A. D. ALS-associated ataxin 2 polyQ expansions enhance stress-induced caspase 3 activation and increase TDP-43 pathological modifications. J. Neurosci. 32, 9133–9142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Armakola, M. et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nature Genet. 44, 1302–1309 (2012). Following up on ATXN2 as a disease modifier for TDP43-mediated toxicity, the authors report the role of the DBR1 as a contributor to TDP43-mediated toxicity. Subsequent to splicing events, when intronic lariats are no longer processed by DBR1, the lariats sequester TDP43 and prevent TDP43 from exerting its neurotoxic effects.

    Article  CAS  PubMed  Google Scholar 

  83. Bertolotti, A. et al. hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J. 15, 5022–5031 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kwiatkowski, T. J. Jr et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Sun, Z. et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9, e1000614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lagier-Tourenne, C. M. Polymenidou & Cleveland, D. W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46–R64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Waibel, S., Neumann, M., Rabe, M., Meyer, T. & Ludolph, A. C. Novel missense and truncating mutations in FUS/TLS in familial ALS. Neurology 75, 815–817 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Huang, E. J. et al. Extensive FUS-immunoreactive pathology in juvenile amyotrophic lateral sclerosis with basophilic inclusions. Brain Pathol. 20, 1069–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baumer, D. et al. Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations. Neurology 75, 611–618 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aoki, N. et al. Localization of fused in sarcoma (FUS) protein to the post-synaptic density in the brain. Acta Neuropathol. 124, 383–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Zinszner, H. et al. TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J. Cell Sci. 110, 1741–1750 (1997).

    CAS  PubMed  Google Scholar 

  93. Dormann, D. et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 29, 2841–2857 (2010). This paper elegantly shows that FUS mutations are localized in the NLS and that they lead to impaired nuclear import and FUS accumulation in the cytoplasm, where it associates with stress granules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dormann, D. et al. Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J. 31, 4258–4275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lagier-Tourenne, C. et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nature Neurosci. 15, 1488–1497 (2012). Similar to the study on RNA targets for TDP43, this study focuses on RNA targets for FUS and found many genes to be differentially expressed and/or spliced upon FUS depletion. Interestingly, upon both FUS and TDP43 depletion, the abundance of some long pre-mRNAs involved in neuronal integrity was reduced, suggesting loss-of-function as a common component of motor neuron disease upon FUS or TDP43 dysregulation.

    Article  CAS  PubMed  Google Scholar 

  96. Dormann, D. & Haass, C. TDP-43 and FUS: a nuclear affair. Trends Neurosci. 34, 339–348 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Farg, M. A. et al. Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum. Mol. Genet. 22, 717–728 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Couthouis, J. et al. A yeast functional screen predicts new candidate ALS disease genes. Proc. Natl Acad. Sci. USA 108, 20881–20890 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Couthouis, J. et al. Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 2899–2911 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Polymenidou, M. & Cleveland, D. W. The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147, 498–508 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. King, O. D., Gitler, A. D. & Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 1462, 61–80 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cushman, M. et al. Prion-like disorders: blurring the divide between transmissibility and infectivity. J. Cell Sci. 123, 1191–1201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Munch, C., O'Brien, J. & Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl Acad. Sci. USA 108, 3548–3553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Grad, L. I. et al. Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc. Natl Acad. Sci. USA 108, 16398–16403 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ravits, J. M. & La Spada, A. R. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73, 805–811 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012). This paper shows that non-transgenic mice inoculated with synthetic α-synuclein fibrils acquire Parkinson-like Lewy body disease, which propagates from cell to cell, causing dopaminergic loss of the substantia nigra pars compacta. This could be an interesting disease mechanism through which prion domain-containing proteins,such as TDP43 and FUS, which are known to be causative of ALS, are similarly propagating, causing selective motor neuron disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011). References 107 and 108 are the first to describe a hexanucleotide repeat in the 5′ non-coding sequence of C9ORF72 as a cause of ALS and FTLD. Reference 107 also describes the presence of intranuclear repeat-containing RNA foci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gijselinck, I. et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 11, 54–65 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Majounie, E. et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 11, 323–330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dobson-Stone, C. et al. C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts. Neurology 79, 995–1001 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Levine, T. P., Daniels, R. D., Gatta, A. T., Wong, L. H. & Hayes, M. J. The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics 29, 499–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chio, A. et al. Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. Brain 135, 784–793 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Millecamps, S. et al. Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J. Med. Genet. 49, 258–263 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Brettschneider, J. et al. Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol. 123, 825–839 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Byrne, S. et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol. 11, 232–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Snowden, J. S. et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135, 693–708 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Pearson, J. P. et al. Familial frontotemporal dementia with amyotrophic lateral sclerosis and a shared haplotype on chromosome 9p. J. Neurol. 258, 647–655 (2011).

    Article  PubMed  Google Scholar 

  119. van Blitterswijk, M. et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 3776–3784 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. van Blitterswijk, M. Dejesus-Hernandez, M. & Rademakers, R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? Curr. Opin. Neurol. 25, 689–700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hsiung, G. Y. et al. Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain 135, 709–722 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  126. Liquori, C. L. et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Brook, J. D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 69, 385 (1992).

    CAS  PubMed  Google Scholar 

  128. Mankodi, A. et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10, 35–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Philips, A. V., Timchenko, L. T. & Cooper, T. A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280, 737–741 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Sergeant, N. et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum. Mol. Genet. 10, 2143–2155 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Miller, J. W. et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Suenaga, K. et al. Muscleblind-like 1 knockout mice reveal novel splicing defects in the myotonic dystrophy brain. PLoS ONE 7, e33218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kanadia, R. N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Fratta, P. et al. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci. Rep. 2, 1016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pearson, C. E. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities! PLoS Genet 7, e1002018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zu, T. et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl Acad. Sci. USA 108, 260–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Mori, K. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 7 Feb 2013 (doi:10.1126/science.1232927).

    Article  CAS  PubMed  Google Scholar 

  138. Ash, P. E. et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Takahashi, H. et al. Widespread multiple system degeneration in a patient with familial amyotrophic lateral sclerosis. J. Neurol. Sci. 120, 15–21 (1993).

    Article  CAS  PubMed  Google Scholar 

  140. Kanning, K. C., Kaplan, A. & Henderson, C. E. Motor neuron diversity in development and disease. Annu. Rev. Neurosci. 33, 409–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Pun, S. et al. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nature Neurosci. 9, 408–419 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Van Hoecke, A. et al. EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nature Med. 18, 1418–1422 (2012). Using a zebrafish screening model for ALS, these authors identified EPHA4 as a major disease modifier, a finding that was confirmed in several different models of motor neuron disease. Interestingly, these authors found that EPHA4 expression levels in patients with ALS are irreversibly correlated with disease onset and survival.

    Article  CAS  PubMed  Google Scholar 

  143. Corona, J. C., Tovar- y-Romo, L. B. & Tapia, R. Glutamate excitotoxicity and therapeutic targets for amyotrophic lateral sclerosis. Expert Opin. Ther. Targets 11, 1415–1428 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326, 1464–1468 (1992).

    Article  CAS  PubMed  Google Scholar 

  145. Bruijn, L. I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Mitchell, J. et al. Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proc. Natl Acad. Sci. USA 107, 7556–7561 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fossat, P. et al. Glial D-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb. Cortex 22, 595–606 (2012).

    Article  PubMed  Google Scholar 

  148. Lobsiger, C. S., Boillee, S. & Cleveland, D. W. Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons. Proc. Natl Acad. Sci. USA 104, 7319–7326 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mishina, M. et al. A single amino acid residue determines the Ca2+ permeability of AMPA-selective glutamate receptor channels. Biochem. Biophys. Res. Commun. 180, 813–821 (1991).

    Article  CAS  PubMed  Google Scholar 

  150. Van Damme, P. et al. Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc. Natl Acad. Sci. USA 104, 14825–14830 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vanselow, B. K. & Keller, B. U. Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)-related motoneurone disease. J. Physiol. 525, 433–445 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yamanaka, K. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nature Neurosci. 11, 251–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Boillee, S., Vande Velde, C. & Cleveland, D. W. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52, 39–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006). This is the first paper to evaluate the individual contribution of different cell types to the phenotype of the SOD1G37R mouse model and supports the idea that glial cells contribute to motor neuron disease.

    Article  CAS  PubMed  Google Scholar 

  155. Wang, L., Gutmann, D. H. & Roos, R. P. Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum. Mol. Genet. 20, 286–293 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Wang, L. et al. The effect of mutant SOD1 dismutase activity on non-cell autonomous degeneration in familial amyotrophic lateral sclerosis. Neurobiol. Dis. 35, 234–240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Haidet-Phillips, A. M. et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nature Biotech. 29, 824–828 (2011). The authors found that astrocytes derived from patients with SALS are toxic to co-cultured motor neurons through a SOD1-related mechanism, supporting the idea that wild-type SOD1s can contribute to SALS.

    Article  CAS  Google Scholar 

  158. Appel, S. H. et al. The microglial–motoneuron dialogue in ALS. Acta Myol. 30, 4–8 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Butovsky, O. et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J. Clin. Invest. 122, 3063–3087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Beers, D. R. et al. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc. Natl Acad. Sci. USA 105, 15558–15563 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chiu, I. M. et al. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc. Natl Acad. Sci. USA 105, 17913–17918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Engelhardt, J. I., Tajti, J. & Appel, S. H. Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis. Arch. Neurol. 50, 30–36 (1993).

    Article  CAS  PubMed  Google Scholar 

  163. Beers, D. R. et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134, 1293–1314 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Henkel, J. S. et al. Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol. Med. 5, 64–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012). This is the first paper to indicate that oligodendrocytes mediate metabolic support to neurons through their expression of MCT1 monocarboxylate transporters, which provide neurons with the metabolite lactate. As a lack of this transporter leads to motor neuron degeneration, the reduction in MCT1 expression found in patients with ALS and in ALS mouse models probably contributes to motor neuron disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Philips, T. et al. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain 136, 471–482 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  167. Miller, T. M. et al. Gene transfer demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 103, 19546–19551 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Williams, A. H. et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326, 1549–1554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhong, Z. et al. Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J. Clin. Invest. 119, 3437–3449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhong, Z. et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nature Neurosci. 11, 420–422 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Yamanaka, K. et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc. Natl Acad. Sci. USA 105, 7594–7599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Schmidt, E. R., Pasterkamp, R. J. & van den Berg, L. H. Axon guidance proteins: novel therapeutic targets for ALS? Prog. Neurobiol. 88, 286–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Bergeron, C. et al. Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J. Neuropathol. Exp. Neurol. 53, 221–230 (1994).

    Article  CAS  PubMed  Google Scholar 

  174. Strong, M. J. et al. TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol. Cell Neurosci. 35, 320–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Volkening, K. et al. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res. 1305, 168–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Gros-Louis, F. et al. A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J. Biol. Chem. 279, 45951–45956 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Figlewicz, D. A. et al. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum. Mol. Genet. 3, 1757–1761 (1994).

    Article  CAS  PubMed  Google Scholar 

  178. Tomkins, J. et al. Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport 9, 3967–3970 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Puls, I. et al. Mutant dynactin in motor neuron disease. Nature Genet. 33, 455–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Munch, C. et al. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 63, 724–726 (2004).

    Article  CAS  PubMed  Google Scholar 

  181. Wu, C. H. et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488, 499–503 (2012). Together with EPHA4, PFN1 is one of the recently identified genes associated with axonal outgrowth that are involved in motor neuron disease. These genes provide strong support for continuing the assessment of cytoskeletal disorganization and axonal transport impairment as important disease-causing mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Winning, R. S. et al. EphA4 catalytic activity causes inhibition of RhoA GTPase in Xenopus laevis embryos. Differentiation 70, 46–55 (2002).

    Article  CAS  PubMed  Google Scholar 

  183. Tsuda, H. et al. The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell 133, 963–977 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nishimura, A. L. et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822–831 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yang, Y. et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nature Genet. 29, 160–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Linseman, D. A. & Loucks, F. A. Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front. Biosci. 13, 657–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Dupuis, L. et al. Nogo provides a molecular marker for diagnosis of amyotrophic lateral sclerosis. Neurobiol. Dis. 10, 358–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Jokic, N. et al. The neurite outgrowth inhibitor Nogo-A promotes denervation in an amyotrophic lateral sclerosis model. EMBO Rep. 7, 1162–1167 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ruiz de Almodovar, C. et al. VEGF mediates commissural axon chemoattraction through its receptor Flk1. Neuron 70, 966–978 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  191. Storkebaum, E. et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nature Neurosci. 8, 85–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Landers, J. E. et al. Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 106, 9004–9009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Traynor, B. J. et al. Kinesin-associated protein 3 (KIFAP3) has no effect on survival in a population-based cohort of ALS patients. Proc. Natl Acad. Sci. USA 107, 12335–12338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. van Es, M. A. et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nature Genet. 41, 1083–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Diekstra, F. P. et al. UNC13A is a modifier of survival in amyotrophic lateral sclerosis. Neurobiol. Aging 33, 630.e3–630.e8 (2012).

    Article  CAS  Google Scholar 

  196. Simpson, C. L. et al. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum. Mol. Genet. 18, 472–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Klassen, R. et al. DNA repair defects sensitize cells to anticodon nuclease yeast killer toxins. Mol. Genet. Genom. 285, 185–195 (2011).

    Article  CAS  Google Scholar 

  198. Miskiewicz, K. et al. ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot. Neuron 72, 776–788 (2011).

    Article  CAS  PubMed  Google Scholar 

  199. Mackenzie, I. R., Rademakers, R. & Neumann, M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 9, 995–1007 (2010).

    Article  CAS  PubMed  Google Scholar 

  200. Lillo, P. & Hodges, J. R. Frontotemporal dementia and motor neurone disease: overlapping clinic-pathological disorders. J. Clin. Neurosci. 16, 1131–1135 (2009).

    Article  PubMed  Google Scholar 

  201. Mackenzie, I. R. et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 61, 427–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Burrell, J. R. et al. Motor neuron dysfunction in frontotemporal dementia. Brain 134, 2582–2594 (2011).

    Article  PubMed  Google Scholar 

  203. Lomen-Hoerth, C., Anderson, T. & Miller, B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59, 1077–1079 (2002).

    Article  PubMed  Google Scholar 

  204. Turner, B. J. & Talbot, K. Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog. Neurobiol. 85, 94–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Feiguin, F. et al. Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett. 583, 1586–1592 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Laird, A. S. et al. Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy. PLoS ONE 5, e13368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kraemer, B. C. et al. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol. 119, 409–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wu, L. S., Cheng, W. C. & Shen, C. K. Targeted depletion of TDP-43 expression in the spinal cord motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice. J. Biol. Chem. 287, 27335–27344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Liachko, N. F., Guthrie, C. R. & Kraemer, B. C. Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J. Neurosci. 30, 16208–16219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Da Cruz, S. & Cleveland, D. W. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr. Opin. Neurobiol. 21, 904–919 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Stallings, N. R. et al. Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol. Dis. 40, 404–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  212. Wegorzewska, I. et al. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 106, 18809–18814 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wils, H. et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 107, 3858–3863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhou, H. et al. Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet. 6, e1000887 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Uchida, A. et al. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain 135, 833–846 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Huang, C. et al. Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J. Clin. Invest. 122, 107–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  217. Hicks, G. G. et al. Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nature Genet. 24, 175–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  218. Kuroda, M. et al. Male sterility and enhanced radiation sensitivity in TLS−/− mice. EMBO J. 19, 453–462 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Fujii, R. et al. The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr. Biol. 15, 587–593 (2005).

    Article  CAS  PubMed  Google Scholar 

  220. Huang, C. et al. FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet. 7, e1002011 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Mitchell, J. C. et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol. 125, 273–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Smith, R. A. et al. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest. 116, 2290–2296 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Gros-Louis, F. et al. Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J. Neurochem. 113, 1188–1199 (2010).

    CAS  PubMed  Google Scholar 

  224. Wheeler, T. M. et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488, 111–115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Moreno-Igoa, M. et al. Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy. J. Mol. Med. 88, 297–308 (2010).

    Article  CAS  PubMed  Google Scholar 

  226. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nature Biotech. 27, 59–65 (2009).

    Article  CAS  Google Scholar 

  227. Gowing, G. & Svendsen, C. N. Stem cell transplantation for motor neuron disease: current approaches and future perspectives. Neurotherapeutics 8, 591–606 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008). This is the first paper to describe the generation of motor neurons from fibroblasts from an elderly patient with FALS. Fibroblasts from a patient with ALS were reprogrammed into a pluripotent state and subsequently differentiated into motor neurons, which could then be used for a whole range of new therapeutic applications.

    Article  CAS  PubMed  Google Scholar 

  229. Glass, J. D. et al. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 30, 1144–1151 (2012).

    Article  CAS  PubMed  Google Scholar 

  230. Lepore, A. C. et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nature Neurosci. 11, 1294–1301 (2008).

    Article  CAS  PubMed  Google Scholar 

  231. Rosen, D. R. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364, 59–62 (1993).

    Article  Google Scholar 

  232. Greenway, M. J. et al. ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis. Nature Genet. 38, 411–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  233. Chen, Y. Z. et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 74, 1128–1135 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Orlacchio, A. et al. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 133, 591–598 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Hadano, S. et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nature Genet. 29, 166–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  236. Hand, C. K. et al. A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am. J. Hum. Genet. 70, 251–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  237. Sapp, P. C. et al. Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am. J. Hum. Genet. 73, 397–403 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Hentati, A. et al. Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers. Neurogenetics 2, 55–60 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Robberecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1

Schematic representation of the most important proteins with their molecular domains in which mutations cause ALS. (PDF 360 kb)

Supplementary information S2

Mutations in proteins involved in protein degradation cause ALS. (PDF 276 kb)

Related links

Related links

DATABASES

ClinicalTrials.gov

NCT01348451

NCT01640067

FURTHER INFORMATION

Wim Robberecht's homepage

Glossary

Frontotemporal dementia

This term refers to the clinical presentation of the behavioural variant of frontotemporal lobe degeneration.

Frontotemporal lobe degeneration

(FTLD). A pathology that is characterized by frontal and temporal lobe atrophy. It presents with behavioural or language abnormalities.

Unfolded protein response

(UPR). This denotes a stress reaction of the cell in response to the accumulation of misfolded proteins in the endoplasmic reticulum. It aims to stall protein translation and increase the production of chaperone molecules to restore proper folding. If it is not successful, the UPR gives way to the apoptotic machinery.

Bulbar onset

The onset of ALS in the bulbar region: that is, the muscles of pharynx, tongue and larynx. The patient usually presents with speech and swallowing problems.

Intergenerational instability

This refers to the mechanism through which certain repeat expansions can increase in length during gametogenesis.

Somatic instability

Repeat expansions can grow longer in dividing cells. This explains why the length of an expansion can be variable between tissues and within cells within a tissue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robberecht, W., Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14, 248–264 (2013). https://doi.org/10.1038/nrn3430

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing