Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Improving the efficacy of RAAS blockade in patients with chronic kidney disease

Abstract

Reduction of blood pressure and proteinuria by blockade of the renin–angiotensin–aldosterone system (RAAS) has been the cornerstone of renoprotective intervention for patients with chronic kidney disease (CKD) for many years. Despite the proven efficacy of RAAS blockade, however, the reduction in proteinuria is insufficient in many patients, and does not prevent further deterioration of renal function. Short-term studies have shown that a variety of treatment intensification strategies have a beneficial effect on blood pressure and proteinuria, including RAAS blockade using either dose escalation or multiple drugs, and restriction of dietary sodium. Large clinical trials have shown that RAAS blockade with multiple drugs does not improve patients' long-term renal or cardiovascular outcome. By contrast, two post-hoc analyses of landmark trials in nephrology show beneficial renal and cardiovascular effects from avoiding excessive dietary sodium intake during single-agent RAAS blockade therapy. The effects of dietary sodium restriction on renal or cardiovascular outcome still require prospective confirmation. However, current data support the implementation of lifestyle changes to reduce dietary sodium intake in combination with single-agent RAAS blockade, rather than dual-agent RAAS blockade, as a potent and feasible strategy to mitigate the burden of renal and cardiovascular disease in patients with CKD.

Key Points

  • Despite the proven efficacy of blockade of the renin–angiontensin–aldosterone system (RAAS) as a treatment for chronic kidney disease the prognosis of these patients is poor

  • Recent data from large clinical trials demonstrate that a combination of two drugs that block the RAAS does not protect patients against renal and cardiovascular outcomes

  • Avoidance of excessive dietary sodium intake has been shown to enhance the effect of single-agent RAAS blockade against renal and cardiovascular outcomes in two post-hoc analyses of clinical trials

  • Lifestyle changes to avoid high dietary sodium intake are advised with RAAS blockade to reduce the risk of renal and cardiovascular outcomes in patients with chronic kidney disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The relationship between sodium status and adverse event rates during RAAS blockade.
Figure 2: The relationship between sodium status and all-cause mortality during RAAS blockade.
Figure 3: The effect of NT-proBNP levels on the response of patients with chronic kidney disease to the angiotensin-receptor blocker losartan.

Similar content being viewed by others

References

  1. American Diabetes Association. Standards of medical care in diabetes--2012. Diabetes Care 35 (Suppl. 1), S11–S63 (2012).

  2. Kidney Disease Outcomes Quality Initiative. Clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am. J. Kidney Dis. 43 (Suppl. 1), S1–S290 (2004).

  3. Burgess, E. et al. Supramaximal dose of candesartan in proteinuric renal disease. J. Am. Soc. Nephrol. 20, 893–900 (2009).

    Article  CAS  Google Scholar 

  4. Weir, M. R. et al. Antihypertensive effects of double the maximum dose of valsartan in African-American patients with type 2 diabetes mellitus and albuminuria. J. Hypertens. 28, 186–193 (2010).

    Article  CAS  Google Scholar 

  5. Heeg, J. E., de Jong, P. E., van der Hem, G. K. & de Zeuuw, D. Efficacy and variability of the antiproteinuric effect of ACE inhibition by lisinopril. Kidney Int. 36, 272–279 (1989).

    Article  CAS  Google Scholar 

  6. Kunz, R., Friedrich, C., Wolbers, M. & Mann, J. F. Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann. Intern. Med. 148, 30–48 (2008).

    Article  Google Scholar 

  7. Jennings, D. L., Kalus, J. S., Coleman, C. I., Manierski, C. & Yee, J. Combination therapy with an ACE inhibitor and an angiotensin receptor blocker for diabetic nephropathy: a meta-analysis. Diabet. Med. 24, 486–493 (2007).

    Article  CAS  Google Scholar 

  8. MacKinnon, M. et al. Combination therapy with an angiotensin receptor blocker and an ACE inhibitor in proteinuric renal disease: a systematic review of the efficacy and safety data. Am. J. Kidney Dis. 48, 8–20 (2006).

    Article  CAS  Google Scholar 

  9. Laverman, G. D., Navis, G., Henning, R. H., de Jong, P. E. & de Zeeuw, D. Dual renin-angiotensin system blockade at optimal doses for proteinuria. Kidney Int. 62, 1020–1025 (2002).

    Article  CAS  Google Scholar 

  10. Esnault, V. L., Ekhlas, A., Nguyen, J. M. & Moranne, O. Diuretic uptitration with half dose combined ACEI+ARB better decrease proteinuria than combined ACEI+ARB uptitration. Nephrol. Dial. Transplant. 25, 2218–2224 (2010).

    Article  CAS  Google Scholar 

  11. Lambers-Heerspink, H. J., Perkovic V. & de Zeeuw, D. Renal and cardio-protective effects of direct renin inhibition: a systematic literature review. J. Hypertens. 27, 2321–2331 (2009).

    Article  CAS  Google Scholar 

  12. van Paassen, P., de Zeeuw, D., Navis, G. & de Jong, P. E. Renal and systemic effects of continued treatment with renin inhibitor remikiren in hypertensive patients with normal and impaired renal function. Nephrol. Dial. Transplant. 15, 637–643 (2000).

    Article  CAS  Google Scholar 

  13. Persson, F. et al. Renal effects of aliskiren compared with and in combination with irbesartan in patients with type 2 diabetes, hypertension, and albuminuria. Diabetes Care 32, 1873–1879 (2009).

    Article  CAS  Google Scholar 

  14. Parving, H. H. et al. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N. Engl. J. Med. 358, 2433–2446 (2008).

    Article  CAS  Google Scholar 

  15. Waanders, F. et al. Aldosterone, from (patho) physiology to treatment in cardiovascular and renal damage. Curr. Vasc. Pharmacol. 9, 594–605 (2011).

    Article  CAS  Google Scholar 

  16. Blasi, E. R. et al. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 63, 1791–1800 (2003).

    CAS  PubMed  Google Scholar 

  17. Nagase, M. et al. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension 50, 877–883 (2007).

    Article  CAS  Google Scholar 

  18. Kramer, A. B., van der Meulen, E. F., Hamming, I., van Goor, H. & Navis, G. Effect of combining ACE inhibition with aldosterone blockade on proteinuria and renal damage in experimental nephrosis. Kidney Int. 71, 417–424 (2007).

    Article  CAS  Google Scholar 

  19. Rossing, K., Schjoedt, K. J., Smidt, U. M., Boomsma, F. & Parving, H. H. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care 28, 2106–2112 (2005).

    Article  CAS  Google Scholar 

  20. van den Meiracker, A. H. et al. Spironolactone in type 2 diabetic nephropathy: effects on proteinuria, blood pressure and renal function. J. Hypertens. 24, 2285–2292 (2006).

    Article  CAS  Google Scholar 

  21. Schjoedt, K. J. et al. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int. 70, 536–542 (2006).

    Article  CAS  Google Scholar 

  22. Epstein, M. et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 1, 940–951 (2006).

    Article  CAS  Google Scholar 

  23. Morales, E. et al. Renoprotective effect of mineralocorticoid receptor blockers in patients with proteinuric kidney disease. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfs429.

  24. Navaneethan, S. D., Nigwekar, S. U., Sehgal, A. R. & Strippoli, G. F. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 4, 542–551 (2009).

    Article  CAS  Google Scholar 

  25. Nederlands Trial Register. trialregister.nl [online], (2012).

  26. ONTARGET Investigators et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 358, 1547–1559 (2008).

  27. Mann, J. F. et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372, 547–553 (2008).

    Article  CAS  Google Scholar 

  28. Ruggenenti, P. & Remuzzi, G. Proteinuria: Is the ONTARGET renal substudy actually off target? Nat. Rev. Nephrol. 5, 436–437 (2009).

    Article  Google Scholar 

  29. Lambers-Heerspink, H. J. & de Zeeuw, D. Dual RAS therapy not on target, but fully alive. Nephron Clin. Pract. 116, c137–c142 (2010).

    Article  CAS  Google Scholar 

  30. Tobe, S. W. et al. Cardiovascular and renal outcomes with telmisartan, ramipril or both in people at high renal risk: results from the ONTARGET and TRANSCEND studies. Circulation 123, 1098–1107 (2011).

    Article  CAS  Google Scholar 

  31. Parving, H. H. et al. Cardio-renal endpoints in a trial of aliskiren for type 2 diabetes. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMoa1208799.

  32. Parving, H. H. et al. Baseline characteristics in the aliskiren trial in type 2 diabetes using cardio-renal endpoints (ALTITUDE). J. Renin Angiotensin Aldosterone Syst. 13, 387–393 (2012).

    Article  Google Scholar 

  33. Fried, L. F. et al. Design of combination angiotensin receptor blocker and angiotensin-converting enzyme inhibitor for treatment of diabetic nephropathy (VA NEPHRON-D). Clin. J. Am. Soc. Nephrol. 4, 361–368 (2009).

    Article  CAS  Google Scholar 

  34. Maione, A. et al. Protocol of the long-term impact of RAS inhibition on cardiorenal outcomes (LIRICO) randomized trial. J. Nephrol. 20, 646–655 (2007).

    CAS  PubMed  Google Scholar 

  35. Chapman, A. B. et al. The HALT polycystic kidney disease trials: design and implementation. Clin. J. Am. Soc. Nephrol. 5, 102–109 (2010).

    Article  Google Scholar 

  36. Gansevoort, R. T., de Zeeuw, D., Shahinfar, S., Redfield, A. & de Jong, P. E. Effects of the angiotensin II antagonist losartan in hypertensive patients with renal disease. J. Hypertens. Suppl. 12, S37–S42 (1994).

    CAS  PubMed  Google Scholar 

  37. Miao, Y. et al. Increased serum potassium affects renal outcomes: a post hoc analysis of the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. Diabetologia 54, 44–50 (2011).

    Article  CAS  Google Scholar 

  38. Slagman, M. C. et al. Erythropoietin is reduced by combination of diuretic therapy and RAAS blockade in proteinuric renal patients with preserved renal function. Nephrol. Dial. Transplant. 25, 3256–3260 (2010).

    Article  CAS  Google Scholar 

  39. Mohanram, A., Zhang, Z., Shahinfar, S., Lyle, P. A. & Toto, R. D. The effect of losartan on hemoglobin concentration and renal outcome in diabetic nephropathy of type 2 diabetes. Kidney Int. 73, 630–636 (2008).

    Article  CAS  Google Scholar 

  40. Miao, Y. et al. Effect of a reduction in uric acid on renal outcomes during losartan treatment: a post hoc analysis of the reduction of endpoints in non-insulin-dependent diabetes mellitus with the Angiotensin II Antagonist Losartan Trial. Hypertension 58, 2–7 (2011).

    Article  CAS  Google Scholar 

  41. Smink, P. A. et al. An initial reduction in serum uric acid during angiotensin receptor blocker treatment is associated with cardiovascular protection: a post-hoc analysis of the RENAAL and IDNT trials. J. Hypertens. 30, 1022–1028 (2012).

    Article  CAS  Google Scholar 

  42. Slagman, M. C. et al. Effects of antiproteinuric intervention on elevated connective tissue growth factor (CTGF/CCN-2) plasma and urine levels in nondiabetic nephropathy. Clin. J. Am. Soc. Nephrol. 6, 1845–1850 (2011).

    Article  CAS  Google Scholar 

  43. Onuigbo, M. A. & Onuigbo, N. T. Late-onset renal failure from angiotensin blockade (LORFFAB) in 100 CKD patients. Int. Urol. Nephrol. 40, 233–239 (2008).

    Article  CAS  Google Scholar 

  44. Onuigbo, M. A. & Onuigbo, N. T. Worsening renal failure in older chronic kidney disease patients with renal artery stenosis concurrently on renin angiotensin aldosterone system blockade: a prospective 50-month Mayo-Health-System clinic analysis. QJM 101, 519–527 (2008).

    Article  CAS  Google Scholar 

  45. Onuigbo, M. A. Radiographic contrast-induced nephropathy and patient mortality. Mayo Clin. Proc. 83, 1412–1413 (2008).

    Article  Google Scholar 

  46. Richer-Giudicelli, C. et al. Haemodynamic effects of dual blockade of the renin-angiotensin system in spontaneously hypertensive rats: influence of salt. J. Hypertens. 22, 619–627 (2004).

    Article  CAS  Google Scholar 

  47. Slagman, M. C. et al. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ 343, d4366 (2011).

    Article  Google Scholar 

  48. Nallamothu, B. K., Hayward, R. A. & Bates, E. R. Beyond the randomized clinical trial: the role of effectiveness studies in evaluating cardiovascular therapies. Circulation 118, 1294–1303 (2008).

    Article  Google Scholar 

  49. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  Google Scholar 

  50. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 349, 1857–1863 (1997).

  51. Navis, G., de Jong, P., Donker, A. J., van der Hem G. K. & de Zeeuw, D. Diuretic effects of angiotensin-converting enzyme inhibition: comparison of low and liberal sodium diet in hypertensive patients. J. Cardiovasc. Pharmacol. 9, 743–748 (1987).

    Article  CAS  Google Scholar 

  52. Navis, G., de Jong, P. E., Donker, A. J., van der Hem, G. K. & de Zeeuw, D. Moderate sodium restriction in hypertensive subjects: renal effects of ACE-inhibition. Kidney Int. 31, 815–819 (1987).

    Article  CAS  Google Scholar 

  53. MacGregor, G. A. et al. Moderate sodium restriction with angiotensin converting enzyme inhibitor in essential hypertension: a double blind study. Br. Med. J. (Clin. Res. Ed.) 294, 531–534 (1987).

    Article  CAS  Google Scholar 

  54. Houlihan, C. A. et al. A low-sodium diet potentiates the effects of losartan in type 2 diabetes. Diabetes Care 25, 663–671 (2002).

    Article  CAS  Google Scholar 

  55. Ekinci, E. I. et al. Effects of salt supplementation on the albuminuric response to telmisartan with or without hydrochlorothiazide therapy in hypertensive patients with type 2 diabetes are modulated by habitual dietary salt intake. Diabetes Care 32, 1398–1403 (2009).

    Article  CAS  Google Scholar 

  56. Wapstra, F. H., Van Goor, H., Navis, G., de Jong, P. E. & de Zeeuw, D. Antiproteinuric effect predicts renal protection by angiotensin-converting enzyme inhibition in rats with established adriamycin nephrosis. Clin. Sci. (Lond.) 90, 393–401 (1996).

    Article  CAS  Google Scholar 

  57. Vogt, L., Waanders, F., Boomsma, F., de Zeeuw, D. & Navis, G. Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan. J. Am. Soc. Nephrol. 19, 999–1007 (2008).

    Article  CAS  Google Scholar 

  58. Weir, M. R., Yadao, A. M., Purkayastha, D. & Charney, A. N. Effects of high- and low-sodium diets on ambulatory blood pressure in patients with hypertension receiving aliskiren. J. Cardiovasc. Pharmacol. Ther. 15, 356–363 (2010).

    Article  CAS  Google Scholar 

  59. Buter, H., Hemmelder, M. H., Navis, G., de Jong, P. E. & de Zeeuw, D. The blunting of the antiproteinuric efficacy of ACE inhibition by high sodium intake can be restored by hydrochlorothiazide. Nephrol. Dial. Transplant. 13, 1682–1685 (1998).

    Article  CAS  Google Scholar 

  60. Ruggenenti, P. et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 354, 359–364 (1999).

    Article  CAS  Google Scholar 

  61. Vegter, S. et al. Sodium intake, ACE inhibition, and progression to ESRD. J. Am. Soc. Nephrol. 23, 165–173 (2011).

    Article  Google Scholar 

  62. Lambers-Heerspink, H. J. et al. Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers. Kidney Int. 82, 330–337 (2012).

    Article  Google Scholar 

  63. Vallon, V., Blantz, R. C. & Thomson, S. Glomerular hyperfiltration and the salt paradox in early [corrected] type 1 diabetes mellitus: a tubulo-centric view. J. Am. Soc. Nephrol. 14, 530–537 (2003).

    Article  Google Scholar 

  64. Luik, P. T. et al. Short-term moderate sodium restriction induces relative hyperfiltration in normotensive normoalbuminuric type I diabetes mellitus. Diabetologia 45, 535–541 (2002).

    Article  CAS  Google Scholar 

  65. Cook, N. R. et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ 334, 885–888 (2007).

    Article  Google Scholar 

  66. Taylor, R. S., Ashton, K. E., Moxham, T., Hooper, L. & Ebrahim, S. Reduced dietary salt for the prevention of cardiovascular disease. Cochrane Database of Systematic Reviews, Issue 7. Art. No.: CD009217. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD009217/.

  67. He, F. J. & MacGregor, G. A. Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials. Lancet 378, 380–382 (2011).

    Article  Google Scholar 

  68. Paterna, S., Gaspare, P., Fasullo, S., Sarullo, F. M. & di Pasquale, P. Normal-sodium diet compared with low-sodium diet in compensated congestive heart failure: is sodium an old enemy or a new friend? Clin. Sci. (Lond.) 114, 221–230 (2008).

    Article  CAS  Google Scholar 

  69. Kocks, M. J., Lely, A. T., Boomsma, F., de Jong, P. E. & Navis, G. Sodium status and angiotensin-converting enzyme inhibition: effects on plasma angiotensin(1–7) in healthy man. J. Hypertens. 23, 597–602 (2005).

    Article  CAS  Google Scholar 

  70. Kocks, M. J. et al. High dietary sodium blunts affects of angiotensin-converting enzyme inhibition on vascular angiotensin I-to-angiotensin II conversion in rats. J. Cardiovasc. Pharmacol. 42, 601–606 (2003).

    Article  CAS  Google Scholar 

  71. Vogt, L., Kocks, M. J., Laverman, G. D. & Navis, G. Renoprotection by blockade of the renin–angiotensin–aldosterone system in diabetic and non-diabetic chronic kidney disease. Specific involvement of intra-renal angiotensin-converting enzyme activity in therapy resistance? Minerva Med. 95, 395–409 (2004).

    CAS  PubMed  Google Scholar 

  72. Hamming, I., Navis, G., Kocks, M. J. & van Goor, H. ACE inhibition has adverse renal effects during dietary sodium restriction in proteinuric and healthy rats. J. Pathol. 209, 129–139 (2006).

    Article  CAS  Google Scholar 

  73. Trongtorsak, P., Morgan, T. O. & Delbridge, L. M. Combined renin-angiotensin system blockade and dietary sodium restriction impairs cardiomyocyte contractility. J. Renin Angiotensin Aldosterone Syst. 4, 213–219 (2003).

    Article  CAS  Google Scholar 

  74. Thomas, M. C. et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 34, 861–866 (2011).

    Article  CAS  Google Scholar 

  75. O'Donnell, M. J. et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA 306, 2229–2238 (2011).

    Article  CAS  Google Scholar 

  76. Ekinci, E. I. et al. Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care 34, 703–709 (2011).

    Article  Google Scholar 

  77. Visser, F. W., Krikken, J. A., Muntinga, J. H., Dierckx, R. A. & Navis, G. J. Rise in extracellular fluid volume during high sodium depends on BMI in healthy men. Obesity (Silver Spring) 17, 1684–1688 (2009).

    Article  CAS  Google Scholar 

  78. Padmanabhan, S. et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 6, e1001177 (2010).

    Article  Google Scholar 

  79. Slagman, M. C. et al. Elevated N-terminal pro-brain natriuretic peptide levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of dietary sodium restriction and diuretics, but not angiotensin receptor blockade, in proteinuric renal patients. Nephrol. Dial. Transplant. 27, 983–990 (2012).

    Article  CAS  Google Scholar 

  80. van der Kleij, F. G. et al. Angiotensin converting enzyme insertion/deletion polymorphism and short-term renal response to ACE inhibition: role of sodium status. Kidney Int. Suppl. 63, S23–S26 (1997).

    CAS  PubMed  Google Scholar 

  81. Lely, T. A. et al. Response to angiotensin-converting enzyme inhibition is selectively blunted by high sodium in angiotensin-converting enzyme DD genotype: evidence for gene-environment interaction in healthy volunteers. J. Hypertens. 28, 2414–2421 (2010).

    CAS  PubMed  Google Scholar 

  82. Krikken, J. A., Laverman, G. D. & Navis, G. Benefits of dietary sodium restriction in the management of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 18, 531–538 (2009).

    Article  CAS  Google Scholar 

  83. van den Berg, E. et al. Sodium intake and blood pressure in renal transplant recipients. Nephrol. Dial. Transplant. 27, 3352–3359 (2012).

    Article  CAS  Google Scholar 

  84. de Zeeuw, D. et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 376, 1543–1551 (2010).

    Article  CAS  Google Scholar 

  85. Doorenbos, C. R., van den Born, J., Navis, G. & de Borst, M. H. Possible renoprotection by vitamin D in chronic renal disease: beyond mineral metabolism. Nat. Rev. Nephrol. 5, 691–700 (2009).

    Article  CAS  Google Scholar 

  86. Nederlands Trial Register. trialregister.nl [online], (2012).

Download references

Author information

Authors and Affiliations

Authors

Contributions

H. J. Lambers Heerspink and G. J. Navis wrote the article. H. J. Lambers Heerspink, M. H. de Borst, S. J. L. Bakker and G. J. Navis contributed to discussion of the content. M. H. de Borst and S. J. L. Bakker contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Gerjan J. Navis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambers Heerspink, H., de Borst, M., Bakker, S. et al. Improving the efficacy of RAAS blockade in patients with chronic kidney disease. Nat Rev Nephrol 9, 112–121 (2013). https://doi.org/10.1038/nrneph.2012.281

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing