Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal progenitors: an evolutionary conserved strategy for kidney regeneration

Abstract

Following kidney injury, repair can result in functional tissue becoming a patch of cells and disorganized extracellular matrix—a scar—or it can recapitulate the original tissue architecture through the process of regeneration. Regeneration can potentially occur in all animal species and humans. Indeed, the repair of portions of the existing nephron after tubular damage, a response that has been designated classically as cellular regeneration, is conserved in all animal species from the ancestral phases of evolution. By contrast, another type of regenerative response—nephron neogenesis—has been described in lower branches of the animal kingdom, but does not occur in adult mammals. Converging evidence suggests that a renal progenitor system is present in the adult kidney across different stages of evolution, with renal progenitors having been identified as the main drivers of kidney regenerative responses in fish, insects, rodents and humans. In this Review, we describe similarities and differences between the renal progenitor systems through evolution, and propose explanations for how progressive kidney adaptation to environmental changes both required and permitted neonephrogenesis to be given up and for cellular regeneration to be retained as the main regenerative strategy. Understanding the mechanisms that drive renal progenitor growth and differentiation represent the key step for modulating this potential for therapeutic purposes.

Key Points

  • Kidney regeneration occurs in animals and humans following injury through two different strategies: cellular regeneration (in all animals) and nephron neogenesis (in fish, amphibians, reptiles, but not in birds and mammals)

  • Although variable environmental needs across evolution have caused the kidney to take different physical forms and internal organizations, the basic structure of the functional unit of the kidney, the nephron, is mostly conserved

  • A renal progenitor system localized within the nephron that mediates cellular regeneration as well as nephron neogenesis exists in fish, insects, rodents and humans

  • The renal progenitor system consists of stem cells and multiple committed progenitors distributed along the Bowman capsule, the proximal tubule and the distal tubule

  • A shared regenerative strategy based on stem and progenitor cells resulted in the selection of different regenerative solutions in distinct animal classes to allow kidney adaptation to environmental requirements

  • In mammals, enhanced structural complexity related to the appearance of Henle's loop, the division into a cortex and a medulla and an increased number of nephrons resulted in neonephrogenesis being lost and cellular regeneration being retained as the main regenerative strategy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The kidney through evolution, as it proceeded through a series of successive phases, each marked by the development of a more advanced kidney: the pronephros, mesonephros, and metanephros.
Figure 2: The nephron: an evolutionary link.
Figure 3: Similarities in the localization of renal stem cells and progenitor cells (both depicted in red) in fish, insects and mammalian nephrons.
Figure 4: The morphological events and localization of renal progenitors occurring during nephron development in the adult human kidney.

Similar content being viewed by others

References

  1. Remuzzi, G., Benigni, A. & Remuzzi, A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J. Clin. Invest. 116, 288–296 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Remuzzi, A. et al. ACE inhibition reduces glomerulosclerosis and regenerates glomerular tissue in a model of progressive renal disease. Kidney Int. 69, 1124–1130 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Ma, L. J. et al. Regression of glomerulosclerosis with high-dose angiotensin inhibition is linked to decreased plasminogen activator inhibitor-1. J. Am. Soc. Nephrol. 16, 966–976 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Reimschuessel, R. A fish model of renal regeneration and development. ILAR J. 42, 285–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka, E. & Reddien, P. W. The cellular basis for animal regeneration. Dev. Cell. 21, 172–185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brockes, J. P. & Kumar, A. Comparative aspects of animal regeneration. Annu. Rev. Cell. Dev. Biol. 24, 525–549 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Reimschuessel, R., Bennett, R. O., May, E. A. & Lipsky, M. M. Development of newly formed nephrons in the goldfish kidney following hexachlorobutadiene-induced nephrotoxicity. Toxicol. Pathol. 18, 32–38 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Elger, M. et al. Nephrogenesis is induced by partial nephrectomy in the Elasmobranch Leucoraja erinacea. J. Am. Soc. Nephrol. 14, 1506–1518 (2003).

    Article  PubMed  Google Scholar 

  9. Davidson, A. J. Uncharted waters: nephrogenesis and renal regeneration in fish and mammals. Pediatr. Nephrol. 26, 1435–1443 (2011).

    Article  PubMed  Google Scholar 

  10. Romagnani, P. From Proteus to Prometheus: learning from fish to modulate regeneration. J. Am. Soc Nephrol. 21, 726–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Blanpain, C., Horsley, V. & Fuchs, E. Epithelial stem cells: turning over new leaves. Cell 128, 445–458 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shahragim, T. Stem cell: what's in a name? Nature Reports Stem Cells http://dx.doi.org/10.1038/stemcells.2009.90.

  13. Shenghui, H., Nakada, D. & Morrison, S. J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell. Dev. Biol. 25, 377–406 (2009).

    Article  CAS  Google Scholar 

  14. Weissman, I. L., Anderson, D. J. & Gage, F. Stem and progenitor cells: origin, phenotype, lineage commitment and transdifferentiation. Annu. Rev. Cell. Dev. Biol. 17, 387–403 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Romagnani, P. Toward the identification of a “renopoietic system”? Stem Cells 27, 2247–2253 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dantzler, W. H. & Braun, J. Vertebrate renal system in Handbook of Physiology (ed. Dantzler, W. H.) Section 13: Comparative Physiology (Oxford University Press, New York, 1997).

    Google Scholar 

  17. Barraclough, G. (ed.) The Times Atlas of World History (Times Books, London, 1978).

    Google Scholar 

  18. Gascoigne, B. History of Evolution. HistoryWorld [online], (2001).

    Google Scholar 

  19. Dow, J. A. & Romero, M. F. Drosophila provides rapid modeling of renal development, function, and disease. Am. J. Physiol. Renal Physiol. 299, 1237–1244 (2010).

    Article  CAS  Google Scholar 

  20. Dressler, G. R. The cellular basis of kidney development. Annu. Rev. Cell. Dev. Biol. 22, 509–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Schedl, A. Renal abnormalities and their developmental origin. Nat. Rev. Genet. 8, 791–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, W. et al. “Avian-type” renal medullary tubule organization causes immaturity of urine-concentrating ability in neonates. Kidney Int. 60, 680–693 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Cha, J. H. et al. Cell proliferation in the loop of Henle in the developing rat kidney. J. Am. Soc. Nephrol. 12, 1410–1421 (2001).

    CAS  PubMed  Google Scholar 

  24. Diep, C. Q. et al. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470, 95–100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, W., Boucher, R. C., Bollig, F., Englert, C. & Hildebrandt, F. Characterization of mesonephric development and regeneration using transgenic zebrafish. Am. J. Physiol. Renal Physiol. 299, F1040–F1047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou, W. & Hildebrandt, F. Inducible podocyte injury and proteinuria in transgenic zebrafish. J. Am. Soc. Nephrol. 23, 1039–1047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeng, X. & Hou, S. X. Kidney stem cells found in adult zebrafish. Cell Stem Cell 8, 247–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Singh, S. R., Liu, W. & Hou, S. X. The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell 1, 191–203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh, S. R. & Hou, S. X. Lessons learned about adult kidney stem cells from the malpighian tubules of Drosophila. J. Am. Soc. Nephrol. 19, 660–666 (2008).

    Article  PubMed  Google Scholar 

  30. Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294, 2546–2549 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294, 2542–2545 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Gray, P. The development of the amphibian kidney. I. The development of the mesonephros of rana temporaria. Q. J. Micr. Sci. 73, 507–545 (1930).

    Google Scholar 

  33. Fox, H. in Biology of the Reptilian (Gans, C. & Parsons, T. S.) 1–157 (Academic Press, London, 1977).

    Google Scholar 

  34. Beuchat, C. A. & Braun, E. J. Allometry of the kidney: implications for the ontogeny of osmoregulation. Am. J. Physiol. 255, 760–767 (1988).

    Article  Google Scholar 

  35. Solomon, S. E. The morphology of the kidney of the green turtle. J. Anat. 140, 355–369 (1985).

    PubMed  PubMed Central  Google Scholar 

  36. Wideman, R. F. Jr. Maturation of glomerular size distribution profiles in domestic fowl (Gallus gallus). J. Morphol. 201, 205–213 (1989).

    Article  PubMed  Google Scholar 

  37. Nishimura, H. et al. Aquaporin-2 water channel in developing quail kidney: possible role in programming adult fluid homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, 2147–2158 (2007).

    Article  CAS  Google Scholar 

  38. Bakir, L. & De Rouffignac, C. Urinary concentrating ability: insights from comparative anatomy. Am. J. Physiol. 249, 643–666 (1985).

    Google Scholar 

  39. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barker, N. et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Reports 2, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Oliver, J. A., Maarouf, O., Cheema, F. H., Martens, T. P. & Al-Awqati, Q. The renal papilla is a niche for adult kidney stem cells. J. Clin. Invest. 114, 795–804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dekel, B. et al. Isolation and characterization of nontubular sca-1+lin-multipotent stem/progenitor cells from adult mouse kidney. J. Am. Soc. Nephrol. 17, 3300–3314 (2006).

    Article  PubMed  Google Scholar 

  43. Bussolati, B. et al. Isolation of renal progenitor cells from adult human kidney. Am. J. Pathol. 166, 545–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Kitamura, S. et al. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J. 19, 1789–1797 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Gupta, S. et al. Isolation and characterization of kidney-derived stem cells. J. Am. Soc. Nephrol. 17, 3028–3040 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Maeshima, A., Sakurai, H. & Nigam, S. K. Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney. J. Am. Soc. Nephrol. 17, 188–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Challen, G. A., Bertoncello, I., Deane, J. A., Ricardo, S. D. & Little, M. H. Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity. J. Am. Soc. Nephrol. 17, 1896–1912 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Langworthy, M., Zhou, B., de Caestecker, M., Moeckel, G. & Baldwin, H. S. NFATc1 identifies a population of proximal tubule cell progenitors. J. Am. Soc. Nephrol. 20, 311–321 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Humphreys, B. D. et al. Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl Acad. Sci. USA 108, 9226–9231 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wen, X., Murugan, R., Peng, Z. & Kellum, J. A. Pathophysiology of acute kidney injury: a new perspective. Contrib. Nephrol. 165, 39–45 (2010).

    Article  PubMed  Google Scholar 

  52. Smeets, B. et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J. Pathol. http://dx.doi.org/10.1002/path.4125.

  53. Appel, D. et al. Recruitment of podocytes from glomerular parietal epithelial cells. J. Am. Soc. Nephrol. 20, 333–343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grouls, S. et al. Lineage specification of parietal epithelial cells requires β-catenin/Wnt signaling. J. Am. Soc. Nephrol. 23, 63–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Benigni, A. et al. Inhibiting ACE promotes renal repair by limiting progenitor cells proliferation and restoring the glomerular architecture. Am. J. Pathol. 179, 628–638 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Peti-Peterdi, J. & Sipos, A. A high-powered view of the filtration barrier. J. Am. Soc. Nephrol. 21, 1835–1841 (2010).

    Article  PubMed  Google Scholar 

  57. Coskun, V. et al. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc. Natl Acad. Sci. USA 105, 1026–1031 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ivanova, L., Hiatt, M. J., Yoder, M. C., Tarantal, A. F. & Matsell, D. G. Ontogeny of CD24 in human kidney. Kidney Int. 77, 1123–1131 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Sagrinati, C. et al. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J. Am. Soc. Nephrol. 17, 2443–2456 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Mazzinghi, B. et al. Essential but differential role for CXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells. J. Exp. Med. 205, 479–490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ronconi, E. et al. Regeneration of glomerular podocytes by human renal progenitors. J. Am. Soc. Nephrol. 20, 322–332 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lazzeri, E. et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J. Am. Soc. Nephrol. 18, 3128–3138 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Angelotti, M. L. et al. Characterization of renal progenitors committed toward the tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30, 1714–1725 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Sallustio, F. et al. TLR2 plays a role in the activation of human resident renal stem/progenitor cells. FASEB J. 24, 514–525 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol. 178, 828–837 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ward, H. H. et al. Adult human CD133/1(+) kidney cells isolated from papilla integrate into developing kidney tubules. Biochim. Biophys. Acta 1812, 1344–1157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bussolati, B. et al. Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance. Am. J. Physiol. Renal. Physiol. 302, F116–F128 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Loverre, A. et al. Increase of proliferating renal progenitor cells in acute tubular necrosis underlying delayed graft function. Transplantation 85, 1112–1119 (2008).

    Article  PubMed  Google Scholar 

  69. Ye, Y. et al. Proliferative capacity of stem/progenitor-like cells in the kidney may associate with the outcome of patients with acute tubular necrosis. Hum. Pathol. 42, 1132–1141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sallustio, F. et al. Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR2-driven inhibin-A and microvesicle-shuttled decorin. Kidney Int. (in press).

  71. Axelson, H. & Johansson, M. E. Renal stem cells and their implications for kidney cancer. Semin. Cancer Biol. http://dx.doi.org/10.1016/j.semcancer.2012.06.005.

  72. Borg, B., Antonopoulou, E., Andersson, E., Carlberg, T. & Mayer, I. Effectiveness of several androgens in stimulating kidney hypertrophy, a secondary sexual character, in castrated male three-spined sticklebacks, Gasterosteus aculeatus. Can. J. Zool. 71, 2327–2329 (1993).

    Article  CAS  Google Scholar 

  73. Rushbrook, B. J. & Barber, I. Nesting, courtship and kidney hypertrophy in Schistocephalus-infected male three-spined stickleback from an upland lake. J. Fish Biol. 69, 870–882 (2006).

    Article  Google Scholar 

  74. Bely, A. E. & Nyberg, K. J. Evolution of animal regeneration: re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010).

    Article  PubMed  Google Scholar 

  75. Shepherd, G. M. The human sense of smell: are we better than what we think? PLoS Biol. 2, 572–575 (2004).

    Article  CAS  Google Scholar 

  76. Bely, A. E. Evolutionary loss of animal regeneration: pattern and process. Integr. Comp. Biol. 50, 515–527 (2010).

    Article  PubMed  Google Scholar 

  77. Quigley, R. Developmental changes in renal function. Curr. Opin. Pediatr. 24, 184–190 (2012).

    Article  PubMed  Google Scholar 

  78. Dantzler, W. H. & Braun, E. J. Comparative nephron function in reptiles, birds, and mammals. Am. J. Physiol. 239, R197–R213 (1980).

    Article  CAS  PubMed  Google Scholar 

  79. Goss, R. J. Principles of Regeneration. (Academic Press, New York, 1969).

    Google Scholar 

  80. Reichman, J. Evolution of regeneration capabilities. Am. Nat. 123, 752–763 (1984).

    Article  Google Scholar 

  81. Guffey, C. Costs associated with leg autotomy in the harvestmen Leiobunum nigripes and Leiobunum vittatum (Arachnida: Opiliones). Can. J. Zool. 77, 824–830 (1999).

    Article  Google Scholar 

  82. Brueseke, M. A. et al. Leg autotomy in the wolf spider Pardosa milvina: a common phenomenon with few apparent costs. Am. Midl. Nat. 146, 153–160 (2001).

    Article  Google Scholar 

  83. Brautigam, S. E. & Persons, M. H. The effect of limb loss on the courtship and mating behavior of the wolf spider Pardosa milvina (Araneae: Lycosidae). Insect Behav. 16, 571–587 (2003).

    Article  Google Scholar 

  84. Luyckx, V. A. & Brenner, B. M. The clinical importance of nephron mass. J. Am. Soc. Nephrol. 21, 898–910 (2010).

    Article  PubMed  Google Scholar 

  85. Tan, J. C. et al. Glomerular function, structure, and number in renal allografts from older deceased donors. J. Am. Soc. Nephrol. 20, 181–188 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors of this manuscript are supported by the European Research Council (ERC) Starting Grant under the European Community's Seventh Framework Programme (FP7/2007-2013; ERC grant number 205027), the European Community under the European Community's Seventh Framework Programme (FP7/2012-2016; grant number 305436), the Tuscany Ministry of Health (Bando Salute 2009), by the Italian Ministry of Health and by the Associazione Italiana per la Ricerca sul Cancro. The authors are also partially supported by the ERC-2010-7-AdG-268632 RESET Grant.

Author information

Authors and Affiliations

Authors

Contributions

P. Romagnani researched data for article and wrote the article. All of the authors made substantial contributions to discussion of content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Paola Romagnani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romagnani, P., Lasagni, L. & Remuzzi, G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol 9, 137–146 (2013). https://doi.org/10.1038/nrneph.2012.290

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.290

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research