Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular plasticity in kidney injury and repair

Key Points

  • The ability of a mature cell to convert into a different cell type is called cell plasticity

  • Originally described in cultured cells, cell plasticity is now a recognized feature of organisms, particularly in response to injury

  • Epithelial dedifferentiation occurs after kidney injury, and can be considered as a limited form of cellular plasticity

  • No evidence exists to support the notion that epithelial dedifferentiation confers multipotency, or the ability of a cell from one tubule segment to differentiate into a cell from another segment

  • The potential existence of a fixed population of epithelial progenitors versus the existence of cells with universal dedifferentiation capacity is still controversial

  • The molecular pathways underlying epithelial cell plasticity are likely to be different from developmental pathways, and must be understood in order to identify novel therapeutic targets

Abstract

Terminally differentiated cells can be reprogrammed to pluripotency or directly to another differentiated cell type in vitro, a capacity termed cellular plasticity. Plasticity is not limited to in vitro manipulations but rather represents an important aspect of the regenerative response to injury in organs. Differentiated adult cells retain the capacity to dedifferentiate, adopting a progenitor-like phenotype after injury or, alternatively, to transdifferentiate, directly converting to a different mature cell type. Emerging concepts on cellular plasticity have relevance to our understanding of repair after kidney injury, including epithelial regeneration. Here we discuss work published in the past 5 years on the cellular hierarchies and mechanisms underlying kidney injury and repair, with a particular focus on potential roles for cellular plasticity in this response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dedifferentiation: a regenerative response to kidney injury.
Figure 2: Tubular regeneration by dedifferentiation.
Figure 3: Tubular regeneration mediated by scattered progenitor epithelial cells.
Figure 4: Nephron progenitors are unipotent and have segment-restricted progeny.

Similar content being viewed by others

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Du, Y. et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell 14, 394–403 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Huang, P. et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14, 370–384 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Tata, P. R. & Rajagopal, J. Cellular plasticity: 1712 to the present day. Curr. Opin. Cell Biol. 43, 46–54 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Merrell, A. J. & Stanger, B. Z. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat. Rev. Mol. Cell Biol. 17, 413–425 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Steen, T. P. Stability of chondrocyte differentiation and contribution of muscle to cartilage during limb regeneration in the axolotl (Siredon mexicanum). J. Exp. Zool. 167, 49–78 (1968).

    Article  CAS  PubMed  Google Scholar 

  7. Kragl, M. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Stange, D. E. et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tata, P. R. et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503, 218–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14, 1099–1104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnston, A. P. et al. Dedifferentiated Schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip. Cell Stem Cell 19, 433–448 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Susantitaphong, P. et al. World incidence of AKI: a meta-analysis. Clin. J. Am. Soc. Nephrol. 8, 1482–1493 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thakar, C. V., Christianson, A., Himmelfarb, J. & Leonard, A. C. Acute kidney injury episodes and chronic kidney disease risk in diabetes mellitus. Clin. J. Am. Soc. Nephrol. 6, 2567–2572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Coca, S. G., Yusuf, B., Shlipak, M. G., Garg, A. X. & Parikh, C. R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 53, 961–973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koyner, J. L. et al. Tissue inhibitor metalloproteinase-2 (TIMP-2)IGF-binding protein-7 (IGFBP7) levels are associated with adverse long-term outcomes in patients with AKI. J. Am. Soc. Nephrol. 26, 1747–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. de Caestecker, M. et al. Bridging translation by improving preclinical study design in AKI. J. Am. Soc. Nephrol. 26, 2905–2916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Linde, P. G. et al. Overcoming barriers in kidney health-forging a platform for innovation. J. Am. Soc. Nephrol. 27, 1902–1910 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Amdur, R. L., Chawla, L. S., Amodeo, S., Kimmel, P. L. & Palant, C. E. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 76, 1089–1097 (2009).

    Article  PubMed  Google Scholar 

  21. Hsu, R. K. & Hsu, C. Y. The role of acute kidney injury in chronic kidney disease. Semin. Nephrol. 36, 283–292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Basile, D. P. et al. Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J. Am. Soc. Nephrol. 27, 687–697 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Kramann, R., Kusaba, T. & Humphreys, B. D. Who regenerates the kidney tubule? Nephrol. Dial. Transplant. 30, 903–910 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Witzgall, R., Brown, D., Schwarz, C. & Bonventre, J. V. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J. Clin. Invest. 93, 2175–2188 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bonventre, J. V. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J. Am. Soc. Nephrol. 14 (Suppl. 1), S55–S61 (2003).

    Article  PubMed  Google Scholar 

  26. Zhuang, S., Yan, Y., Han, J. & Schnellmann, R. G. p38 kinase-mediated transactivation of the epidermal growth factor receptor is required for dedifferentiation of renal epithelial cells after oxidant injury. J. Biol. Chem. 280, 21036–21042 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Hallman, M. A., Zhuang, S. & Schnellmann, R. G. Regulation of dedifferentiation and redifferentiation in renal proximal tubular cells by the epidermal growth factor receptor. J. Pharmacol. Exp. Ther. 325, 520–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y., Yang, J., Luo, J. H., Dedhar, S. & Liu, Y. Tubular epithelial cell dedifferentiation is driven by the helix-loop-helix transcriptional inhibitor Id1. J. Am. Soc. Nephrol. 18, 449–460 (2007).

    Article  PubMed  Google Scholar 

  29. Villanueva, S., Cespedes, C. & Vio, C. P. Ischemic acute renal failure induces the expression of a wide range of nephrogenic proteins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R861–R870 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Imgrund, M. et al. Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice 1. Kidney Int. 56, 1423–1431 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Torres, M., Gomez-Pardo, E., Dressler, G. R. & Gruss, P. Pax-2 controls multiple steps of urogenital development. Development 121, 4057–4065 (1995).

    CAS  PubMed  Google Scholar 

  32. Torban, E. et al. PAX2 activates WNT4 expression during mammalian kidney development. J. Biol. Chem. 281, 12705–12712 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Terada, Y. et al. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J. Am. Soc. Nephrol. 14, 1223–1233 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Dirocco, D. P., Kobayashi, A., Taketo, M. M., McMahon, A. P. & Humphreys, B. D. Wnt4/β-catenin signaling in medullary kidney myofibroblasts. J. Am. Soc. Nephrol. 24, 1399–1412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vogetseder, A., Karadeniz, A., Kaissling, B. & Le Hir, M. Tubular cell proliferation in the healthy rat kidney. Histochem. Cell Biol. 124, 97–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Vogetseder, A. et al. Proliferation capacity of the renal proximal tubule involves the bulk of differentiated epithelial cells. Am. J. Physiol. Cell Physiol. 294, C22–C28 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Humphreys, B. D. et al. Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl Acad. Sci. USA 108, 9226–9231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B. D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl Acad. Sci. USA 111, 1527–1532 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Kusaba, T. & Humphreys, B. D. Controversies on the origin of proliferating epithelial cells after kidney injury. Pediatr. Nephrol. 29, 673–679 (2014).

    Article  PubMed  Google Scholar 

  41. Lombardi, D., Becherucci, F. & Romagnani, P. How much can the tubule regenerate and who does it? An open question. Nephrol. Dial. Transplant. 31, 1243–1250 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Sagrinati, C. et al. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J. Am. Soc. Nephrol. 17, 2443–2456 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Bussolati, B. et al. Isolation of renal progenitor cells from adult human kidney. Am. J. Pathol. 166, 545–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol. 178, 828–837 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Angelotti, M. L. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30, 1714–1725 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Smeets, B. et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J. Pathol. 229, 645–659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oliver, J. A., Maarouf, O., Cheema, F. H., Martens, T. P. & Al-Awqati, Q. The renal papilla is a niche for adult kidney stem cells. J. Clin. Invest. 114, 795–804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adams, D. C. & Oxburgh, L. The long-term label retaining population of the renal papilla arises through divergent regional growth of the kidney. Am. J. Physiol. Renal Physiol. 297, F809–F815 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oliver, J. A. et al. Proliferation and migration of label-retaining cells of the kidney papilla. J. Am. Soc. Nephrol. 20, 2315–2327 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Oliver, J. A. et al. A subpopulation of label-retaining cells of the kidney papilla regenerates injured kidney medullary tubules. Stem Cell Rep. 6, 757–771 (2016).

    Article  Google Scholar 

  51. Berger, K. et al. Origin of regenerating tubular cells after acute kidney injury. Proc. Natl Acad. Sci. USA 111, 1533–1538 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Romagnani, P., Rinkevich, Y. & Dekel, B. The use of lineage tracing to study kidney injury and regeneration. Nat. Rev. Nephrol. 11, 420–431 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rinkevich, Y. et al. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep. 7, 1270–1283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barker, N. et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Kumar, S. et al. Sox9 activation highlights a cellular pathway of renal repair in the acutely injured mammalian kidney. Cell Rep. 12, 1325–1338 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Kang, H. M. et al. Sox9-positive progenitor cells play a key role in renal tubule epithelial regeneration in mice. Cell Rep. 14, 861–871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bussolati, B. et al. Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance. Am. J. Physiol. Renal Physiol. 302, F116–F128 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Pode-Shakked, N. et al. Dissecting stages of human kidney development and tumorigenesis with surface markers affords simple prospective purification of nephron stem cells. Sci. Rep. 6, 23562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Buzhor, E. et al. Reactivation of NCAM1 defines a subpopulation of human adult kidney epithelial cells with clonogenic and stem/progenitor properties. Am. J. Pathol. 183, 1621–1633 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Metsuyanim, S. et al. Expression of stem cell markers in the human fetal kidney. PLoS ONE 4, e6709 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li, J. et al. Collecting duct-derived cells display mesenchymal stem cell properties and retain selective in vitro and in vivo epithelial capacity. J. Am. Soc. Nephrol. 26, 81–94 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Abbate, M., Brown, D. & Bonventre, J. V. Expression of NCAM recapitulates tubulogenic development in kidneys recovering from acute ischemia. Am. J. Physiol. 277, F454–F463 (1999).

    CAS  PubMed  Google Scholar 

  64. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chera, S. et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514, 503–507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Waddington, C. H. The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology (George Allen & Unwin, 1957).

    Google Scholar 

  68. Takahashi, K. & Yamanaka, S. A developmental framework for induced pluripotency. Development 142, 3274–3285 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Rajagopal, J. & Stanger, B. Z. Plasticity in the adult: how should the Waddington diagram be applied to regenerating tissues? Dev. Cell 36, 133–137 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH/NIDDK DK107274, DK103740 and DK103050 and by an Established Investigator Award of the American Heart Association (to B.D.H.), and by F32 DK103441 (to M.C.-P.).

Author information

Authors and Affiliations

Authors

Contributions

M.C-P and B.D.H. researched the data for the article, contributed equally to discussions of the content, wrote the article and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Benjamin D. Humphreys.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Cell plasticity

Ability of a mature cell to convert to a different cell type; dedifferentiation and transdifferentiation are two examples of cell plasticity.

Blastema

Mass of undifferentiated cells that can develop into an organ or body part during embryogenesis, or regenerate an organ or body part after injury in an adult.

Gastric chief cells

Differentiated epithelial cells located deep in the mucosal layer of the stomach lining that secretes pepsinogen and gastric lipase.

Secretory cells

Cells present in the lumen of airways that have both secretory and detoxifying functions. Secretory cells can also differentiate into ciliated airway cells that propel mucus up the airway.

Basal cells

Self-renewing airway stem cells that can differentiate into multiple epithelial cell types.

Mesenchymal cells

Cells that develop in the lymphatic and circulatory systems and connective tissues, including bone and cartilage. Many mesenchymal cells have stem and progenitor cell characteristics such as the ability to differentiate into bone, cartilage or fat.

Label retaining cells

(LRCs). Cells with a slow cell cycle, a property shared by many stem cells. The assay to identify them involves a DNA-analogue pulse, followed by a chase period. Slow-cycling cells retain the DNA label whereas fast-cycling cells dilute it during the chase period.

Rainbow reporter mice

Transgenic mice that express a fluorescent reporter system that enables the genetic labelling of individual cells with each cell expressing a different reporter colour stochastically. This technique enables researchers to distinguish adjacent cells according to the colour of their fluorescent reporter and follow their expansion and fate clonally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang-Panesso, M., Humphreys, B. Cellular plasticity in kidney injury and repair. Nat Rev Nephrol 13, 39–46 (2017). https://doi.org/10.1038/nrneph.2016.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing