Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunology of acute stroke

Abstract

Recent clinical and experimental studies have highlighted a complex role for the immune system in the pathophysiological changes that occur after acute stroke. Sensors of the innate immune system such as Toll-like receptors, or effectors such as the lectin pathway of complement activation and innate immune cells, are activated by brain ischaemia and tissue damage, leading to amplification of the inflammatory cascade. Activation of the adaptive arm of the immune system, mediated by lymphocyte populations including T and B cells, regulatory T cells, and γδT cells, in response to stroke can lead to deleterious antigen-specific autoreactive responses but can also have cytoprotective effects. Increased incidence of infections is observed after acute stroke, and might result from activation of long-distance feedback loops between the CNS and peripheral immune organs, which are thought to play a part in stroke-induced immunodepression. Ongoing clinical trials are investigating whether the preventive use of antibiotics improves functional outcome after stroke. This Review discusses the multifaceted role of the immune system in the pathophysiology of acute stroke.

Key Points

  • Acute stroke is followed by a complex interaction between the brain and the immune system

  • Damage-associated molecular patterns are released after neuronal damage, and activate the innate and adaptive arms of the immune system

  • Different populations of lymphocytes can exert beneficial or detrimental functions after acute stroke, although the underlying mechanisms are not fully elucidated

  • Stroke can lead to immunodepression, increasing the risk of infections such as pneumonia

  • Ongoing studies are addressing the prophylactic use of antibiotics after stroke

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innate and adaptive immune responses after acute stroke.
Figure 2: The anti-inflammatory reflex and poststroke infection.

Similar content being viewed by others

References

  1. Engelhardt, B. & Ransohoff, R. M. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 26, 485–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Weller, R. O., Djuanda, E., Yow, H. Y. & Carare, R. O. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 117, 1–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Carson, M. J., Doose, J. M., Melchior, B., Schmid, C. D. & Ploix, C. C. CNS immune privilege: hiding in plain sight. Immunol. Rev. 213, 48–65 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Bauer, J. et al. T-cell apoptosis in inflammatory brain lesions: destruction of T cells does not depend on antigen recognition. Am. J. Pathol. 153, 715–724 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tian, L., Rauvala, H. & Gahmberg, C. G. Neuronal regulation of immune responses in the central nervous system. Trends Immunol. 30, 91–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Farina, C., Aloisi, F. & Meinl, E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28, 138–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Perry, V. H. A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. J. Neuroimmunol. 90, 113–121 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Steinman, L. Elaborate interactions between the immune and nervous systems. Nat. Immunol. 5, 575–581 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 8, 12–18 (2007).

    Article  CAS  Google Scholar 

  11. Chen, G. Y. & Nuñez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schroeter, M., Jander, S., Witte, O. W. & Stoll, G. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J. Neuroimmunol. 55, 195–203 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Tarkowski, E. et al. Early intrathecal production of interleukin-6 predicts the volume of brain lesion in stroke. Stroke 26, 1393–1398 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Fassbender, K. et al. Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J. Neurol. Sci. 122, 135–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Beamer, N. B., Coull, B. M., Clark, W. M., Hazel, J. S. & Silberger, J. R. Interleukin-6 and interleukin-1 receptor antagonist in acute stroke. Ann. Neurol. 37, 800–804 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Chamorro, A., Urra, X. & Planas, A. M. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke 38, 1097–1103 (2007).

    Article  PubMed  Google Scholar 

  17. Vila, N., Castillo, J., Dávalos, A. & Chamorro, A. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke 31, 2325–2329 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Vila, N. et al. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke 34, 671–675 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Rubartelli, A. & Lotze, M. T. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 28, 429–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Pasare, C. & Medzhitov, R. Toll-like receptors: balancing host resistance with immune tolerance. Curr. Opin. Immunol. 15, 677–682 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lotze, M. T. & Tracey, K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev.Immunol. 5, 331–342 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Goldstein, R. S. et al. Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 25, 571–574 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Kono, H., Chen, C. J., Ontiveros, F. & Rock, K. L. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J. Clin. Invest. 120, 1939–1949 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Quintana, F. J. & Cohen, I. R. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J. Immunol. 175, 2777–2782 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Bours, M. J., Swennen, E. L., Di Virgilio, F., Cronstein, B. N. & Dagnelie, P. C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 112, 358–404 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Hofmann, M. A. et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889–901 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Johnson, G. B., Brunn, G. J., Kodaira, Y. & Platt, J. L. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol. 168, 5233–5239 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Burckstummer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Kariko, K., Ni, H., Capodici, J., Lamphier, M. & Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 12542–12550 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, J. B. et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J. Neurosci. 26, 6413–6421 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, K. et al. Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J. 21, 3904–3916 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Hayakawa, K., Qiu, J. & Lo, E. H. Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann. NY Acad. Sci. 1207, 50–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Romanos, E., Planas, A. M., Amaro, S. & Chamorro, A. Uric acid reduces brain damage and improves the benefits of rt-PA in a rat model of thromboembolic stroke. J. Cereb. Blood Flow Metab. 27, 14–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Amaro, S. et al. Uric acid levels are relevant in patients with stroke treated with thrombolysis. Stroke 42 (1 Suppl.), S28–S32 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Hanke, M. L. & Kielian, T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin. Sci. (Lond.) 121, 367–387 (2011).

    Article  CAS  Google Scholar 

  38. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Lehnardt, S. et al. Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J. Neuroimmunol. 190, 28–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Caso, J. R. et al. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115, 1599–1608 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Sansing, L. H. et al. Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann. Neurol. 70, 646–656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Urra, X. et al. Monocyte subtypes predict clinical course and prognosis in human stroke. J. Cereb. Blood Flow Metab. 29, 994–1002 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garcia, J. H. et al. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am. J. Pathol. 144, 188–199 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Urra, X. et al. Monocytes are major players in the prognosis and risk of infection after acute stroke. Stroke 40, 1262–1268 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Haeusler, K. G. et al. Cellular immunodepression preceding infectious complications after acute ischemic stroke in humans. Cerebrovasc. Dis. 25, 50–58 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Harms, H. et al. Preventive antibacterial therapy in acute ischemic stroke: a randomized controlled trial. PLoS ONE 3, e2158 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Klehmet, J. et al. Stroke-induced immunodepression and post-stroke infections: lessons from the Preventive Antibacterial Therapy in Stroke trial. Neuroscience 158, 1184–1193 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Vogelgesang, A. et al. Analysis of lymphocyte subsets in patients with stroke and their influence on infection after stroke. Stroke 39, 237–241 (2008).

    Article  PubMed  Google Scholar 

  50. Hug, A. et al. Infarct volume is a major determiner of post-stroke immune cell function and susceptibility to infection. Stroke 40, 3226–3232 (2009).

    Article  PubMed  Google Scholar 

  51. Yang, Q. W. et al. Upregulated expression of toll-like receptor 4 in monocytes correlates with severity of acute cerebral infarction. J. Cereb. Blood Flow Metab. 28, 1588–1596 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Mocco, J. et al. Alterations in plasma complement levels after human ischemic stroke. Neurosurgery 59, 28–33 (2006).

    CAS  PubMed  Google Scholar 

  53. Lindsberg, P. J. et al. Complement activation in the central nervous system following blood-brain barrier damage in man. Ann. Neurol. 40, 587–596 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Cervera, A. et al. Genetically-defined deficiency of mannose-binding lectin is associated with protection after experimental stroke in mice and outcome in human stroke. PLoS ONE 5, e8433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yilmaz, G., Arumugam, T. V., Stokes, K. Y. & Granger, D. N. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation 113, 2105–2112 (2006).

    Article  PubMed  Google Scholar 

  56. Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing γδT cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Kleinschnitz, C. et al. Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115, 3835–3842 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Liesz, A. et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134, 704–720 (2011).

    PubMed  Google Scholar 

  60. Gelderblom, M. et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40, 1849–1857 (2009).

    Article  PubMed  Google Scholar 

  61. Engelhardt, B. & Sorokin, L. The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin. Immunopathol. 31, 497–511 (2009).

    Article  PubMed  Google Scholar 

  62. Martin, B., Hirota, K., Cua, D. J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδT cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Konoeda, F. et al. Therapeutic effect of IL-12/23 and their signaling pathway blockade on brain ischemia model. Biochem. Biophys. Res. Commun. 402, 500–506 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Czech, B. et al. The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem. Biophys. Res. Commun. 389, 251–256 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Wei, Y. et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann. Neurol. 69, 119–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Liesz, A. et al. FTY720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLoS ONE 6, e21312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, W. Z. et al. Myelin antigen reactive T cells in cerebrovascular diseases. Clin. Exp. Immunol. 88, 157–162 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bornstein, N. M. et al. Antibodies to brain antigens following stroke. Neurology 56, 529–530 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Planas, A. M. et al. Brain-derived antigens in lymphoid tissue of patients with acute stroke. J. Immunol. 188, 2156–2163 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Becker, K. J. Sensitization and tolerization to brain antigens in stroke. Neuroscience 158, 1090–1097 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Becker, K. J., Kindrick, D. L., Lester, M. P., Shea, C. & Ye, Z. C. Sensitization to brain antigens after stroke is augmented by lipopolysaccharide. J. Cereb. Blood Flow Metab. 25, 1634–1644 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Becker, K. J. et al. Autoimmune responses to the brain after stroke are associated with worse outcome. Stroke 42, 2763–2769 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Subramanian, S. et al. Recombinant T cell receptor ligand treats experimental stroke. Stroke 40, 2539–2545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moalem, G. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Lewitus, G. M., Kipnis, J., Avidan, H., Ben-Nun, A. & Schwartz, M. Neuroprotection induced by mucosal tolerance is epitope-dependent: conflicting effects in different strains. J. Neuroimmunol. 175, 31–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Frenkel, D. et al. Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4+ T cells. J. Immunol. 171, 6549–6555 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Gee, J. M., Kalil, A., Thullbery, M. & Becker, K. J. Induction of immunologic tolerance to myelin basic protein prevents central nervous system autoimmunity and improves outcome after stroke. Stroke 39, 1575–1582 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Takeda, H. et al. Induction of mucosal tolerance to E-selectin prevents ischemic and hemorrhagic stroke in spontaneously hypertensive genetically stroke-prone rats. Stroke 33, 2156–2163 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, Y. et al. Mucosal tolerance to E-selectin provides cell-mediated protection against ischemic brain injury. Proc. Natl Acad. Sci. USA 100, 15107–15112 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hallenbeck, J. How inflammation modulates central nervous system vessel activation and provides targets for intervention—a personal perspective. Ann. NY Acad. Sci. 1207, 1–7 (2010).

    Article  PubMed  Google Scholar 

  82. Gee, J. M. et al. Long term immunologic consequences of experimental stroke and mucosal tolerance. Exp. Transl. Stroke Med. 1, 3 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Offner, H. et al. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J. Immunol. 176, 6523–6531 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Ren, X., Akiyosji, K., Vandenbark, A. A., Hurn, P. D. & Offner, H. CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab. Brain Dis. 26, 87–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Ooboshi, H. et al. Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 2, 913–919 (2005).

    Article  CAS  Google Scholar 

  87. Ren, X. et al. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J. Neurosci. 31, 8556–8563 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Justicia, C. et al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J. Cereb. Blood Flow Metab. 23, 1430–1440 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Mills, K. H. TLR-dependent T cell activation in autoimmunity. Nat. Rev. Immunol. 11, 807–822 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Lake, J., Weller, R. O., Phillips, M. J. & Needham, M. Lymphocyte targeting of the brain in adoptive transfer cryolesion-EAE. J. Pathol. 187, 259–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Westendorp, W. F., Nederkoorn, P. J., Vermeij, J. D., Dijkgraaf, M. G. & van de Beek, D. Post-stroke infection: a systematic review and meta-analysis. BMC Neurol. 11, 110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Finlayson, O. et al. Risk factors, inpatient care, and outcomes of pneumonia after ischemic stroke. Neurology 77, 1338–1345 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Katzan, I. L., Dawson, N. V., Thomas, C. L., Votruba, M. E. & Cebul, R. D. The cost of pneumonia after acute stroke. Neurology 68, 1938–1943 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Katzan, I. L., Cebul, R. D., Husak, S. H., Dawson, N. V. & Baker, D. W. The effect of pneumonia on mortality among patients hospitalized for acute stroke. Neurology 60, 620–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. van de Beek, D. et al. Preventive antibiotics for infections in acute stroke: a systematic review and meta-analysis. Arch. Neurol. 66, 1076–1081 (2009).

    Article  PubMed  Google Scholar 

  96. Martino, R. et al. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke 36, 2756–2763 (2005).

    Article  PubMed  Google Scholar 

  97. Sellars, C. et al. Risk factors for chest infection in acute stroke: a prospective cohort study. Stroke 38, 2284–2291 (2007).

    Article  PubMed  Google Scholar 

  98. Westendorp, W. F. et al. Antibiotic therapy for preventing infections in patients with acute stroke. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD008530. http://dx.doi.org/10.1002/14651858.CD008530.pub2.

  99. Poisson, S. N., Johnston, S. C. & Josephson, S. A. Urinary tract infections complicating stroke: mechanisms, consequences, and possible solutions. Stroke 41, e180–e184 (2010).

    PubMed  Google Scholar 

  100. Stott, D. J., Falconer, A., Miller, H., Tilston, J. C. & Langhorne, P. Urinary tract infection after stroke. QJM 102, 243–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Wrona, D. Neural–immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J. Neuroimmunol. 172, 38–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Tarkowski, E., Naver, H., Wallin, B. G., Blomstrand, C. & Tarkowski, A. Lateralization of T-lymphocyte responses in patients with stroke. Effect of sympathetic dysfunction? Stroke 26, 57–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Gendron, A. et al. Temporal effects of left versus right middle cerebral artery occlusion on spleen lymphocyte subsets and mitogenic response in Wistar rats. Brain Res. 955, 85–97 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Harms, H. et al. Influence of stroke localization on autonomic activation, immunodepression, and post-stroke infection. Cerebrovasc. Dis. 32, 552–560 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Steinhagen, V., Grossmann, A., Benecke, R. & Walter, U. Swallowing disturbance pattern relates to brain lesion location in acute stroke patients. Stroke 40, 1903–1906 (2009).

    Article  PubMed  Google Scholar 

  106. Minnerup, J. et al. The impact of lesion location and lesion size on poststroke infection frequency. J. Neurol. Neurosurg. Psychiatry 81, 198–202 (2010).

    Article  PubMed  Google Scholar 

  107. Liesz, A. et al. The spectrum of systemic immune alterations after murine focal ischemia: immunodepression versus immunomodulation. Stroke 40, 2849–2858 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Millns, B., Gosney, M., Jack, C. I., Martin, M. V. & Wright, A. E. Acute stroke predisposes to oral gram-negative bacilli—a cause of aspiration pneumonia? Gerontology 49, 173–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Ersoz, M., Ulusoy, H., Oktar, M. A. & Akyuz, M. Urinary tract infection and bacteriurua in stroke patients: frequencies, pathogen microorganisms, and risk factors. Am. J. Phys. Med. Rehabil. 86, 734–741 (2007).

    Article  PubMed  Google Scholar 

  110. Prass, K. et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J. Exp. Med. 198, 725–736 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Meisel, C., Schwab, J. M., Prass, K., Meisel, A. & Dirnagl, U. Central nervous system injury-induced immune deficiency syndrome. Nat. Rev. Neurosci. 6, 775–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Wong, C. H., Jenne, C. N., Lee, W. Y., Léger, C. & Kubes, P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Trakhtenberg, E. F. & Goldberg, J. L. Neuroimmune communication. Science 334, 47–48 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Hug, A. et al. Reduced efficacy of circulating costimulatory cells after focal cerebral ischemia. Stroke 42, 3580–3586 (2011).

    Article  PubMed  Google Scholar 

  116. Vogelgesang, A. et al. Functional status of peripheral blood T-cells in ischemic stroke patients. PLoS ONE 5, e8718 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chamorro, A. et al. Catecholamines, infection, and death in acute ischemic stroke. J. Neurol. Sci. 252, 29–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Chamorro, A. et al. Interleukin 10, monocytes and increased risk of early infection in ischemic stroke. J. Neurol. Neurosurg. Psychiatry 77, 1279–1281 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Woiciechowsky, C., Schöning, B., Lanksch, W. R., Volk, H. D. & Döcke, W. D. Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J. Mol. Med. 77, 769–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Schaller, B. J., Graf, R. & Jacobs, A. H. Pathophysiological changes of the gastrointestinal tract in ischemic stroke. Am. J. Gastroenterol. 101, 1655–1665 (2006).

    Article  PubMed  Google Scholar 

  121. De Falco, F. A., Santangelo, R., Majello, L. & Angelone, P. Antimicrobial prophylaxis in the management of ischemic stroke [Italian]. Riv. Neurobiol. 44, 63–77 (1998).

    Google Scholar 

  122. Chamorro, A. et al. The Early Systemic Prophylaxis of Infection After Stroke study: a randomized clinical trial. Stroke 36, 1495–1500 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Lampl, Y. et al. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69, 1404–1410 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Schwarz, S., Al-Shajlawi, F., Sick, C., Meairs, S. & Hennerici, M. G. Effects of prophylactic antibiotic therapy with mezlocillin plus sulbactam on the incidence and height of fever after severe acute ischemic stroke: the Mannheim infection in stroke study (MISS). Stroke 39, 1220–1227 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Nederkoorn, P. J. et al. Preventive antibiotics in stroke study: rationale and protocol for randomised trial. Int. J. Stroke 6, 159–163 (2011).

    Article  PubMed  Google Scholar 

  126. Rothstein, J. D. et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, H., Park, J. W., Kim, S. P., Lo, E. H. & Lee, S. R. Doxycycline inhibits matrix metalloproteinase-9 and laminin degradation after transient global cerebral ischemia. Neurobiol. Dis. 34, 189–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Fagan, S. C. et al. Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke 41, 2283–2287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lee, H., Park, J. W., Kim, S. P., Lo, E. H. & Lee, S. R. Doxycycline inhibits matrix metalloproteinase-9 and laminin degradation after transient global cerebral ischemia. Neurobiol. Dis. 34, 189–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. O'Collins, V. E. et al. Preclinical drug evaluation for combination therapy in acute stroke using systematic review, meta-analysis, and subsequent experimental testing. J. Cereb. Blood Flow Metab. 31, 962–975 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Review is dedicated to the memory of Dr Jesús Chamorro (1922–2012), who died during the preparation of the manuscript. This work was supported in part by a grant awarded to Ángel Chamorro from the Melchor Collet Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of the content, writing the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Ángel Chamorro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamorro, Á., Meisel, A., Planas, A. et al. The immunology of acute stroke. Nat Rev Neurol 8, 401–410 (2012). https://doi.org/10.1038/nrneurol.2012.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing