Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

'MHC-I-opathy'—unified concept for spondyloarthritis and Behçet disease

Abstract

The spondyloarthropathies comprise ankylosing spondylitis (AS), reactive arthritis, psoriatic arthritis (PsA) and arthritis associated with inflammatory bowel disease. In this Perspectives article, we describe how Behçet disease and several clinically distinct spondyloarthropathies—all associated with MHC class I (MHC-I) alleles such as HLA-B*51, HLA-C*0602 and HLA-B*27 and epistatic ERAP-1 interactions—have a shared immunopathogenetic basis. As a unifying concept, we propose that barrier dysfunction in environmentally exposed organs such as the skin, and aberrant innate immune reactions at sites of mechanical stress, can often trigger secondary adaptive immune CD8+ T-cell responses with prominent neutrophilic inflammation that culminate in exacerbation and recurrence of these diseases. Of note, these 'MHC-I-opathies' show a differential immunopathology, probably reflecting antigenic differences within target tissues: HLA-B*51 is linked to ocular and mucocutaneous disease but not gut involvement, and HLA-C*0602 is linked to type I psoriasis but not scalp or nail disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue specificity in the MHC-I-opathies.
Figure 2: Adaptive immune priming in the MHC-I-opathies.
Figure 3: The IL-23 axis and innate lymphoid cells in target tissues affected by MHC-I-opathies.
Figure 4: Secondary innate immune amplification in the MHC-I-opathies.

Similar content being viewed by others

References

  1. McGonagle, D. & McDermott, M. F. A proposed classification of the immunological diseases. PLoS Med. 3, e297 (2006).

    PubMed  PubMed Central  Google Scholar 

  2. Direskeneli, H. Behçet's disease: infectious aetiology, new autoantigens, and HLA-B51. Ann. Rheum. Dis. 60, 996–1002 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gul, A. Behçet's disease as an autoinflammatory disorder. Curr. Drug Targets Inflamm. Allergy 4, 81–83 (2005).

    PubMed  Google Scholar 

  4. [No authors listed] Criteria for diagnosis of Behçet's disease. International Study Group for Behçet's Disease. Lancet 335, 1078–1080 (1990).

  5. Moll, J. M., Haslock, I., Macrae, I. F. & Wright, V. Associations between ankylosing spondylitis, psoriatic arthritis, Reiter's disease, the intestinal arthropathies, and Behçet's syndrome. Medicine (Baltimore) 53, 343–364 (1974).

    CAS  Google Scholar 

  6. Goyette, P. & Rioux, J. D. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat. Genet. 47, 172–179 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Saadoun, D. et al. Azathioprine in severe uveitis of Behçet's disease. Arthritis Care Res. (Hoboken) 62, 1733–1738 (2010).

    CAS  Google Scholar 

  8. McGonagle, D. & Georgouli, T. The importance of 'Mechnikov's thorn' for an improved understanding of 21st century medicine and immunology: a view from the eye. Scand. J. Immunol. 68, 129–139 (2008).

    CAS  PubMed  Google Scholar 

  9. Kastner, D. L., Aksentijevich, I. & Goldbach-Mansky, R. Autoinflammatory disease reloaded: a clinical perspective. Cell 140, 784–790 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hayday, A. C. γδ T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    CAS  PubMed  Google Scholar 

  11. Robinson, P. C. & Brown, M. A. Genetics of ankylosing spondylitis. Mol. Immunol. 57, 2–11 (2014).

    CAS  PubMed  Google Scholar 

  12. Gordon, K. B. et al. A phase 2 trial of guselkumab versus adalimumab for plaque psoriasis. N. Engl. J. Med. 373, 136–144 (2015).

    CAS  PubMed  Google Scholar 

  13. Khan, M. A., Mathieu, A., Sorrentino, R. & Akkoc, N. The pathogenetic role of HLA-B27 and its subtypes. Autoimmun. Rev. 6, 183–189 (2007).

    CAS  PubMed  Google Scholar 

  14. Gupta, R., Debbaneh, M. G. & Liao, W. Genetic epidemiology of psoriasis. Curr. Dermatol. Rep. 3, 61–78 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. de Menthon, M., Lavalley, M. P., Maldini, C., Guillevin, L. & Mahr, A. HLA-B51/B5 and the risk of Behçet's disease: a systematic review and meta-analysis of case–control genetic association studies. Arthritis Rheum. 61, 1287–1296 (2009).

    CAS  PubMed  Google Scholar 

  16. Belizaire, R. & Unanue, E. R. Targeting proteins to distinct subcellular compartments reveals unique requirements for MHC class I and II presentation. Proc. Natl Acad. Sci. USA 106, 17463–17468 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

    CAS  PubMed  Google Scholar 

  18. Ombrello, M. J. et al. Behçet disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc. Natl Acad. Sci. USA 111, 8867–8872 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wallace, G. R. HLA-B*51 the primary risk in Behçet disease. Proc. Natl Acad. Sci. USA 111, 8706–8707 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gul, A. & Ohno, S. HLA-B*51 and Behçet disease. Ocul. Immunol. Inflamm. 20, 37–43 (2012).

    CAS  PubMed  Google Scholar 

  21. Ombrello, M. J., Kastner, D. L. & Remmers, E. F. Endoplasmic reticulum-associated amino-peptidase 1 and rheumatic disease: genetics. Curr. Opin. Rheumatol. 27, 349–356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tran, T. M. & Colbert, R. A. Endoplasmic reticulum aminopeptidase 1 and rheumatic disease: functional variation. Curr. Opin. Rheumatol. 27, 357–363 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Robinson, P. C. et al. ERAP2 is associated with ankylosing spondylitis in HLA-B27-positive and HLA-B27-negative patients. Ann. Rheum. Dis. 74, 1627–1629 (2015).

    CAS  PubMed  Google Scholar 

  24. Kirino, Y. et al. Genome-wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA-B*51 and ERAP1. Nat. Genet. 45, 202–207 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cortes, A. et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun. 6, 7146 (2015).

    PubMed  Google Scholar 

  26. Saric, T. et al. An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol. 3, 1169–1176 (2002).

    CAS  PubMed  Google Scholar 

  27. Reeves, E., Colebatch-Bourn, A., Elliott, T., Edwards, C. J. & James, E. Functionally distinct ERAP1 allotype combinations distinguish individuals with ankylosing spondylitis. Proc. Natl Acad. Sci. USA 111, 17594–17599 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gul, A. et al. Immunohistology of skin pathergy reaction in Behçet's disease. Br. J. Dermatol. 132, 901–907 (1995).

    CAS  PubMed  Google Scholar 

  29. Yan, J. et al. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med. 203, 647–659 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Guasp, P. et al. The peptidome of the Behçet's disease-associated HLA-B*51:01 includes two sub-peptidomes differentially shaped by ERAP1. Arthritis. Rheumatol. doi:10.1002/art.39430.

    CAS  Google Scholar 

  31. Costantino, F. et al. ERAP1 gene expression is influenced by nonsynonymous polymorphisms associated with predisposition to spondyloarthritis. Arthritis Rheumatol. 67, 1525–1534 (2015).

    CAS  PubMed  Google Scholar 

  32. Saruhan-Direskeneli, G. et al. Identification of multiple genetic susceptibility loci in Takayasu arteritis. Am. J. Hum. Genet. 93, 298–305 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Haliloglu, T., Gul, A. & Erman, B. Predicting important residues and interaction pathways in proteins using Gaussian network model: binding and stability of HLA proteins. PLoS Comput. Biol. 6, e1000845 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Reeves, E., Edwards, C. J., Elliott, T. & James, E. Naturally occurring ERAP1 haplotypes encode functionally distinct alleles with fine substrate specificity. J. Immunol. 191, 35–43 (2013).

    CAS  PubMed  Google Scholar 

  35. Chen, L. et al. Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27. Arthritis Rheumatol. 66, 284–294 (2014).

    CAS  PubMed  Google Scholar 

  36. Seregin, S. S. et al. Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLA-B27 mediated presentation of multiple antigens. Autoimmunity 46, 497–508 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan, X. et al. Comparison of clinical features of HLA-Cw*0602-positive and -negative psoriasis patients in a Han Chinese population. Acta Derm. Venereol. 87, 335–340 (2007).

    PubMed  Google Scholar 

  39. Gudjonsson, J. E. et al. Distinct clinical differences between HLA-Cw*0602 positive and negative psoriasis patients—an analysis of 1019 HLA-C- and HLA-B-typed patients. J. Invest. Dermatol. 126, 740–745 (2006).

    CAS  PubMed  Google Scholar 

  40. Wilson, F. C. et al. Incidence and clinical predictors of psoriatic arthritis in patients with psoriasis: a population-based study. Arthritis Rheum. 61, 233–239 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Winchester, R. et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 64, 1134–1144 (2012).

    CAS  PubMed  Google Scholar 

  42. Okada, Y. et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am. J. Hum. Genet. 95, 162–172 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. McGonagle, D., Benjamin, M. & Tan, A. L. The pathogenesis of psoriatic arthritis and associated nail disease: not autoimmune after all? Curr. Opin. Rheumatol. 21, 340–347 (2009).

    CAS  PubMed  Google Scholar 

  44. Ash, Z. R. et al. Psoriasis patients with nail disease have a greater magnitude of underlying systemic subclinical enthesopathy than those with normal nails. Ann. Rheum. Dis. 71, 553–556 (2012).

    PubMed  Google Scholar 

  45. Aydin, S. Z. et al. Ultrasonographic assessment of nail in psoriatic disease shows a link between onychopathy and distal interphalangeal joint extensor tendon enthesopathy. Dermatology 225, 231–235 (2012).

    PubMed  Google Scholar 

  46. Maldini, C., Lavalley, M. P., Cheminant, M., de Menthon, M. & Mahr, A. Relationships of HLA-B51 or B5 genotype with Behçet's disease clinical characteristics: systematic review and meta-analyses of observational studies. Rheumatology (Oxford) 51, 887–900 (2012).

    Google Scholar 

  47. Gul, A. et al. Lack of association of HLA-B*51 with a severe disease course in Behçet's disease. Rheumatology (Oxford) 40, 668–672 (2001).

    CAS  Google Scholar 

  48. McGonagle, D., Stockwin, L., Isaacs, J. & Emery, P. An enthesitis based model for the pathogenesis of spondyloarthropathy. Additive effects of microbial adjuvant and biomechanical factors at disease sites. J. Rheumatol. 28, 2155–2159 (2001).

    CAS  PubMed  Google Scholar 

  49. McGonagle, D., Thomas, R. C. & Schett, G. Spondyloarthritis: may the force be with you? Ann. Rheum. Dis. 73, 321–323 (2014).

    PubMed  Google Scholar 

  50. Jacques, P. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 73, 437–445 (2014).

    PubMed  Google Scholar 

  51. Aydin, S. Z. et al. Validation of ultrasound imaging for Achilles entheseal fibrocartilage in bovines and description of changes in humans with spondyloarthritis. Ann. Rheum. Dis. 69, 2165–2168 (2010).

    PubMed  Google Scholar 

  52. Chan, C. C. Relationship between sympathetic ophthalmia, phacoanaphylatic endophthalmitis, and Vogt–Koyanagi–Harada disease. Ophthalmology 95, 619–624 (1988).

    CAS  PubMed  Google Scholar 

  53. Marak, G. E. Jr. Phacoanaphylactic endophthalmitis. Surv. Ophthalmol. 36, 325–339 (1992).

    PubMed  Google Scholar 

  54. Martin, T. M., Smith, J. R. & Rosenbaum, J. T. Anterior uveitis: current concepts of pathogenesis and interactions with the spondyloarthropathies. Curr. Opin. Rheumatol. 14, 337–341 (2002).

    PubMed  Google Scholar 

  55. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975 (2002).

    CAS  PubMed  Google Scholar 

  56. Munoz-Fernandez, S. et al. Enthesis inflammation in recurrent acute anterior uveitis without spondylarthritis. Arthritis Rheum. 60, 1985–1990 (2009).

    PubMed  Google Scholar 

  57. Bandinelli, F. et al. Ultrasound discloses entheseal involvement in inactive and low active inflammatory bowel disease without clinical signs and symptoms of spondyloarthropathy. Rheumatology (Oxford) 50, 1275–1279 (2011).

    Google Scholar 

  58. Ergun, T., Gurbuz, O., Harvell, J., Jorizzo, J. & White, W. The histopathology of pathergy: a chronologic study of skin hyperreactivity in Behçet's disease. Int. J. Dermatol. 37, 929–933 (1998).

    CAS  PubMed  Google Scholar 

  59. Melikoglu, M. et al. Characterization of the divergent wound-healing responses occurring in the pathergy reaction and normal healthy volunteers. J. Immunol. 177, 6415–6421 (2006).

    CAS  PubMed  Google Scholar 

  60. Dilsen, N. et al. Comparative study of the skin pathergy test with blunt and sharp needles in Behçet's disease: confirmed specificity but decreased sensitivity with sharp needles. Ann. Rheum. Dis. 52, 823–825 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Heilborn, J. D. et al. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J. Invest. Dermatol. 120, 379–389 (2003).

    CAS  PubMed  Google Scholar 

  62. Mumcu, G. et al. Salivary levels of antimicrobial peptides Hnp 1–3, Ll-37 and S100 in Behçet's disease. Arch. Oral Biol. 57, 642–646 (2012).

    CAS  PubMed  Google Scholar 

  63. Hatemi, G. et al. The pustular skin lesions in Behçet's syndrome are not sterile. Ann. Rheum. Dis. 63, 1450–1452 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mumcu, G., Inanc, N., Yavuz, S. & Direskeneli, H. The role of infectious agents in the pathogenesis, clinical manifestations and treatment strategies in Behçet's disease. Clin. Exp. Rheumatol. 25, S27–S33 (2007).

    CAS  PubMed  Google Scholar 

  65. Verity, D. H., Wallace, G. R., Vaughan, R. W. & Stanford, M. R. Behçet's disease: from Hippocrates to the third millennium. Br. J. Ophthalmol. 87, 1175–1183 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mumcu, G. et al. Oral health is impaired in Behçet's disease and is associated with disease severity. Rheumatology (Oxford) 43, 1028–1033 (2004).

    CAS  Google Scholar 

  67. Fresko, I., Yazici, H., Bayramicli, M., Yurdakul, S. & Mat, C. Effect of surgical cleaning of the skin on the pathergy phenomenon in Behçet's syndrome. Ann. Rheum. Dis. 52, 619–620 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bergfeldt, L., Insulander, P., Lindblom, D., Moller, E. & Edhag, O. HLA-B27: an important genetic risk factor for lone aortic regurgitation and severe conduction system abnormalities. Am. J. Med. 85, 12–18 (1988).

    CAS  PubMed  Google Scholar 

  69. Tascilar, K. et al. Vascular involvement in Behçet's syndrome: a retrospective analysis of associations and the time course. Rheumatology (Oxford) 53, 2018–2022 (2014).

    CAS  Google Scholar 

  70. McGonagle, D. et al. The role of biomechanical factors and HLA-B27 in magnetic resonance imaging-determined bone changes in plantar fascia enthesopathy. Arthritis Rheum. 46, 489–493 (2002).

    PubMed  Google Scholar 

  71. Puhakka, K. B. et al. Imaging of sacroiliitis in early seronegative spondylarthropathy. Assessment of abnormalities by MR in comparison with radiography and CT. Acta Radiol. 44, 218–229 (2003).

    PubMed  Google Scholar 

  72. Marzo-Ortega, H. et al. Baseline and 1-year magnetic resonance imaging of the sacroiliac joint and lumbar spine in very early inflammatory back pain. Relationship between symptoms, HLA-B27 and disease extent and persistence. Ann. Rheum. Dis. 68, 1721–1727 (2009).

    CAS  PubMed  Google Scholar 

  73. Rudwaleit, M. et al. The early disease stage in axial spondylarthritis: results from the German Spondyloarthritis Inception Cohort. Arthritis Rheum. 60, 717–727 (2009).

    CAS  PubMed  Google Scholar 

  74. Castillo-Gallego, C., Aydin, S. Z., Emery, P., McGonagle, D. G. & Marzo-Ortega, H. Magnetic resonance imaging assessment of axial psoriatic arthritis: extent of disease relates to HLA-B27. Arthritis Rheum. 65, 2274–2278 (2013).

    PubMed  Google Scholar 

  75. Brewerton, D. A., Caffrey, M., Nicholls, A., Walters, D. & James, D. C. Acute anterior uveitis and HL-A 27. Lancet 302, 994–996 (1973).

    CAS  PubMed  Google Scholar 

  76. Wolf, S. E., Meenken, C., Moll, A. C., Haanen, J. B. & van der Heijden, M. S. Severe pan-uveitis in a patient treated with vemurafenib for metastatic melanoma. BMC Cancer 13, 561 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Yasuoka, H. et al. Autoreactive CD8+ cytotoxic T lymphocytes to major histocompatibility complex class I chain-related gene A in patients with Behçet's disease. Arthritis Rheum. 50, 3658–3662 (2004).

    CAS  PubMed  Google Scholar 

  78. Sugita, S., Sagawa, K., Mochizuki, M., Shichijo, S. & Itoh, K. Melanocyte lysis by cytotoxic T lymphocytes recognizing the MART-1 melanoma antigen in HLA-A2 patients with Vogt–Koyanagi–Harada disease. Int. Immunol. 8, 799–803 (1996).

    CAS  PubMed  Google Scholar 

  79. Shao, E. H., Menezo, V. & Taylor, S. R. Birdshot chorioretinopathy. Curr. Opin. Ophthalmol. 25, 488–494 (2014).

    PubMed  Google Scholar 

  80. Kuiper, J. J. et al. A genome-wide association study identifies a functional ERAP2 haplotype associated with birdshot chorioretinopathy. Hum. Mol. Genet. 23, 6081–6087 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Alvarez-Navarro, C., Martin-Esteban, A., Barnea, E., Admon, A. & Lopez de Castro, J. A. Endoplasmic reticulum aminopeptidase 1 (ERAP1) polymorphism relevant to inflammatory disease shapes the peptidome of the birdshot chorioretinopathy-associated HLA-A*29:02 antigen. Mol. Cell Proteomics 14, 1770–1780 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sahin, Z. et al. Takayasu's arteritis is associated with HLA-B*52, but not with HLA-B*51, in Turkey. Arthritis Res. Ther. 14, R27 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kasuya, K., Hashimoto, Y. & Numano, F. Left ventricular dysfunction and HLA Bw52 antigen in Takayasu arteritis. Heart Vessels Suppl. 7, 116–119 (1992).

    CAS  PubMed  Google Scholar 

  84. Meguro, A. et al. Genetics of Behçet disease inside and outside the MHC. Ann. Rheum. Dis. 69, 747–754 (2010).

    CAS  PubMed  Google Scholar 

  85. Remmers, E. F. et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23RIL12RB2 regions associated with Behçet's disease. Nat. Genet. 42, 698–702 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mizuki, N. et al. Genome-wide association studies identify IL23R–IL12RB2 and IL10 as Behçet's disease susceptibility loci. Nat. Genet. 42, 703–706 (2010).

    CAS  PubMed  Google Scholar 

  87. Radouane, A. et al. HLA-B*27 allele associated to Behçet's disease and to anterior uveitis in Moroccan patients. Ann. Biol. Clin. (Paris) 69, 419–424 (2011).

    CAS  Google Scholar 

  88. Hughes, T. et al. Identification of multiple independent susceptibility loci in the HLA region in Behçet's disease. Nat. Genet. 45, 319–324 (2013).

    CAS  PubMed  Google Scholar 

  89. Chi, W. et al. Upregulated IL-23 and IL-17 in Behçet patients with active uveitis. Invest. Ophthalmol. Vis. Sci. 49, 3058–3064 (2008).

    PubMed  Google Scholar 

  90. Menon, B. et al. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 66, 1272–1281 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Talamonti, M. et al. Pharmacogenetics of psoriasis: HLA-Cw6 but not LCE3B/3C deletion nor TNFAIP3 polymorphism predisposes to clinical response to interleukin 12/23 blocker ustekinumab. Br. J. Dermatol. 169, 458–463 (2013).

    CAS  PubMed  Google Scholar 

  92. Mantas, C., Direskeneli, H., Oz, D., Yavuz, S. & Akoglu, T. IL-8 producing cells in patients with Behçet's disease. Clin. Exp. Rheumatol. 18, 249–251 (2000).

    CAS  PubMed  Google Scholar 

  93. Keller, M. et al. T cell-regulated neutrophilic inflammation in autoinflammatory diseases. J. Immunol. 175, 7678–7686 (2005).

    CAS  PubMed  Google Scholar 

  94. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    CAS  PubMed  Google Scholar 

  95. Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    CAS  PubMed  Google Scholar 

  97. Litwin, V., Gumperz, J., Parham, P., Phillips, J. H. & Lanier, L. L. NKB1: a natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules. J. Exp. Med. 180, 537–543 (1994).

    CAS  PubMed  Google Scholar 

  98. Cella, M., Longo, A., Ferrara, G. B., Strominger, J. L. & Colonna, M. NK3-specific natural killer cells are selectively inhibited by Bw4-positive HLA alleles with isoleucine 80. J. Exp. Med. 180, 1235–1242 (1994).

    CAS  PubMed  Google Scholar 

  99. Lanier, L. L. NK cell receptors. Annu. Rev. Immunol. 16, 359–393 (1998).

    CAS  PubMed  Google Scholar 

  100. Mingari, M. C., Moretta, A. & Moretta, L. Regulation of KIR expression in human T cells: a safety mechanism that may impair protective T-cell responses. Immunol. Today 19, 153–157 (1998).

    CAS  PubMed  Google Scholar 

  101. Abdullah, H., Zhang, Z., Yee, K. & Haroon, N. KIR3DL1 interaction with HLA-B27 is altered by ankylosing spondylitis associated ERAP1 and enhanced by MHC class I cross-linking. Discov. Med. 20, 79–89 (2015).

    PubMed  Google Scholar 

  102. Shafi, S. A., Stanford, M. R., Wallace, G. R. & Hayday, A. C. The functional analysis of MICA polymorphism with an emphasis on Behçet's disease. Presented at the 14th International Conference on Behçet's disease [Abstract #314]. Clin. Exp. Rheumatol. 28, 109 (2010).

    Google Scholar 

  103. Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA 101, 16004–16009 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Carter, J. D. et al. Combination antibiotics as a treatment for chronic Chlamydia-induced reactive arthritis: a double-blind, placebo-controlled, prospective trial. Arthritis Rheum. 62, 1298–1307 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Direskeneli, H. Autoimmunity vs autoinflammation in Behçet's disease: do we oversimplify a complex disorder? Rheumatology (Oxford) 45, 1461–1465 (2006).

    CAS  Google Scholar 

  107. Zhao, C. et al. Retinal S-antigen TH1 cell epitope mapping in patients with Behçet's disease. Graefes Arch. Clin. Exp. Ophthalmol. 247, 555–560 (2009).

    CAS  PubMed  Google Scholar 

  108. Zhao, C. et al. S-antigen specific T helper type 1 response is present in Behçet's disease. Mol. Vis. 14, 1456–1464 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Franke, A. et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet. 40, 1319–1323 (2008).

    CAS  PubMed  Google Scholar 

  110. O'Neill, T. P. HLA-B27 transgenic rats: animal model of human HLA-B27-associated disorders. Toxicol. Pathol. 25, 407–408 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.M.'s work is supported by the NIHR (National Institute of Health Research) Leeds Biomedical Research Unit. A.G.'s work is supported by Istanbul University Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussions of its content, writing the article, and review or editing of the manuscript before submission.

Corresponding author

Correspondence to Dennis McGonagle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGonagle, D., Aydin, S., Gül, A. et al. 'MHC-I-opathy'—unified concept for spondyloarthritis and Behçet disease. Nat Rev Rheumatol 11, 731–740 (2015). https://doi.org/10.1038/nrrheum.2015.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing