Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Joint diseases: from connexins to gap junctions

Key Points

  • Multiple connexins are expressed in musculoskeletal tissues, including in joints

  • Gap-junctional intercellular communication contributes to interconnected cell syncytium, which connect various cell types within joints

  • Connexin dysfunction might contribute to joint disease

  • Emerging data suggest that connexins might be novel targets for treating joint disease

Abstract

Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell–cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Connexins, connexons, hemichannels and gap junctions.
Figure 2: Connexins in bone.
Figure 3: Connexins in cartilage.
Figure 4: Connexins in synovium.

Similar content being viewed by others

References

  1. Genetos, D. C., Kephart, C. J., Zhang, Y., Yellowley, C. E. & Donahue, H. J. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J. Cell. Physiol. 212, 207–214 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang, J. X. & Cherian, P. P. Hemichannels formed by connexin 43 play an important role in the release of prostaglandin E(2) by osteocytes in response to mechanical strain. Cell Commun. Adhes. 10, 259–264 (2003).

    CAS  PubMed  Google Scholar 

  3. Donahue, H. Gap junctions and biophysical regulation of bone cell differentiation. Bone 26, 417–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Thi, M. M., Islam, S., Suadicani, S. O. & Spray, D. C. Connexin 43 and pannexin 1 channels in osteoblasts: who is the “hemichannel”? J. Membr. Biol. 245, 401–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Willecke, K. et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 383, 725–737 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Beyer, E. C., Paul, D. L. & Goodenough, D. A. Connexin 43: a protein from rat heart homologous to a gap junction protein from liver. J. Cell Biol. 105, 2621–2629 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, N. M. & Gilula, N. B. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J. Cell Biol. 103, 767–776 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Toyofuku, T. et al. Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J. Biol. Chem. 273, 12725–12731 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Plotkin, L. I. & Bellido, T. Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of connexin 43. Cell Commun. Adhes. 8, 377–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Plotkin, L. I., Manolagas, S. C. & Bellido, T. Transduction of cell survival signals by connexin-43 hemichannels. J. Biol. Chem. 277, 8648–8657 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Stains, J. P. & Civitelli, R. Connexins in the skeleton. Semin. Cell Dev. Biol. 50, 31–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Loiselle, A. E., Jiang, J. X. & Donahue, H. J. Gap junction and hemichannel functions in osteocytes. Bone 54, 205–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Kumar, N. M. & Gilula, N. B. The gap junction communication channel. Cell 84, 381–388 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Martinez, A. D., Hayrapetyan, V., Moreno, A. P. & Beyer, E. C. Connexin 43 and connexin 45 form heteromeric gap junction channels in which individual components determine permeability and regulation. Circ. Res. 90, 1100–1107 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Dallas, S. L., Prideaux, M. & Bonewald, L. F. The osteocyte: an endocrine cell and more. Endocr. Rev. 34, 658–690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, Z., Zhou, Z., Saunders, M. M. & Donahue, H. J. Modulation of connexin 43 alters expression of osteoblastic differentiation markers. Am. J. Physiol. Cell Physiol. 290, C1248–C1255 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Grellier, M., Bareille, R., Bourget, C. & Amedee, J. Responsiveness of human bone marrow stromal cells to shear stress. J. Tissue Eng. Regen Med. 3, 302–309 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Stains, J. P. & Civitelli, R. Gap junctions in skeletal development and function. Biochim. Biophys. Acta 1719, 69–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Krüger, O. et al. Defective vascular development in connexin 45-deficient mice. Development 127, 4179–4193 (2000).

    PubMed  Google Scholar 

  20. Chaible, L. M., Sanches, D. S., Cogliati, B., Mennecier, G. & Dagli, M. L. Z. Delayed osteoblastic differentiation and bone development in Cx43 knockout mice. Toxicol. Pathol. 39, 1046–1055 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Koval, M., Harley, J., Hick, E. & Steinberg, T. Connexin 46 is retained as monomers in a trans-Golgi compartment of osteoblastic cells. J. Cell Biol. 137, 847–857 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pacheco-Costa, R. et al. High bone mass in mice lacking Cx37 because of defective osteoclast differentiation. J. Biol. Chem. 289, 8508–8520 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paic, F. et al. Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 45, 682–692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reaume, A. G. et al. Cardiac malformation in neonatal mice lacking connexin 43. Science 267, 1831–1834 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Lecanda, F. et al. Connexin 43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J. Cell Biol. 151, 931–944 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chung, D. J. et al. Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin 43. J. Cell Sci. 119, 4187–4198 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Lima, F., Niger, C., Hebert, C. & Stains, J. P. Connexin 43 potentiates osteoblast responsiveness to fibroblast growth factor 2 via a protein kinase C-delta/Runx2-dependent mechanism. Mol. Biol. Cell 20, 2697–2708 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Buo, A. M., Tomlinson, R. E., Eidelman, E. R., Chason, M. & Stains, J. P. Connexin 43 and Runx2 interact to affect cortical bone geometry, skeletal development, and osteoblast and osteoclast function. J. Bone Miner. Res. 32, 1727–1738 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paznekas, W. A. et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 72, 408–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Paznekas, W. A. et al. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum. Mutat. 30, 724–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Laird, D. W. Syndromic and non-syndromic disease-linked Cx43 mutations. FEBS Lett. 588, 1339–1348 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Chiba, H. et al. Relationship between the expression of the gap junction protein and osteoblast phenotype in a human osteoblastic cell line during cell proliferation. Cell Struct. Funct. 18, 419–426 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Schiller, P. C., Roos, B. A. & Howard, G. A. Parathyroid hormone up-regulation of connexin 43 gene expression in osteoblasts depends on cell phenotype. J. Bone Miner. Res. 12, 2005–2013 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Lecanda, F. et al. Gap junctional communication modulates gene expression in osteoblastic cells. Mol. Biol. Cell 9, 2249–2258 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Watkins, M. et al. Osteoblast connexin 43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol. Biol. Cell 22, 1240–1251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bivi, N. et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J. Bone Miner. Res. 27, 374–389 (2011).

    Article  CAS  Google Scholar 

  38. Grimston, S. K., Watkins, M. P., Brodt, M. D., Silva, M. J. & Civitelli, R. Enhanced periosteal and endocortical responses to axial tibial compression loading in conditional connexin 43 deficient mice. PLoS ONE 7, e44222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ilvesaro, J., Tavi, P. & Tuukkanen, J. Connexin-mimetic peptide Gap 27 decreases osteoclastic activity. BMC Musculoskelet Disord. 2, 10 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ilvesaro, J., Vaananen, K. & Tuukkanen, J. Bone-resorbing osteoclasts contain gap-junctional connexin-43. J. Bone Miner. Res. 15, 919–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Ransjö, M., Sahli, J. & Lie, A. Expression of connexin 43 mRNA in microisolated murine osteoclasts and regulation of bone resorption in vitro by gap junction inhibitors. 303, 1179–1185 (2003).

  42. Jeansonne, B. G., Feagin, F. F., McMinn, R. W., Shoemaker, R. L. & Rehm, W. S. Cell-to-cell communication of osteoblasts. J. Dent. Res. 58, 1415–1423 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. Yellowley, C. E., Li, Z., Zhou, Z., Jacobs, C. R. & Donahue, H. J. Functional gap junctions between osteocytic and osteoblastic cells. J. Bone Miner. Res. 15, 209–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Rawlinson, S., Pitsillides, A. & Lanyon, L. Involvement of different ion channels in osteoblasts' and osteocytes' early response to mechanical strain. Bone 19, 609–614 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Duncan, R. L. & Turner, C. H. Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 57, 344–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Ziambaras, K., Lecanda, F., Steinberg, T. H. & Civitelli, R. Cyclic stretch enhances gap junctional communication between osteoblastic cells. J. Bone Miner. Res. 13, 218–228 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Alford, A. I., Jacobs, C. R. & Donahue, H. J. Oscillating fluid flow regulates gap junction communication in osteocytic MLO-Y4 cells by an ERK1/2 MAP kinase-dependent mechanism. Bone 33, 64–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Cherian, P. P. et al. Effects of mechanical strain on the function of gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J. Biol. Chem. 278, 43146–43156 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Cheng, B. et al. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. J. Bone Miner. Res. 16, 249–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Thi, M., Kojima, T., Cowin, S., Weinbaum, S. & Spray, D. Fluid shear stress remodels expression and function of junctional proteins in cultured bone cells. Am. J. Physiol. Cell Physiol. 284, C389–C403 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Li, X. et al. Connexin 43 is a potential regulator in fluid shear stress-induced signal transduction in osteocytes. J. Orthop. Res. 31, 1959–1965 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Saunders, M. M. et al. Gap junctions and fluid flow response in MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. 281, C1917–C1925 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Schirrmacher, K. & Bingmann, D. Effects of vitamin D3, 17β-estradiol, vasoactive intestinal peptide, and glutamate on electric coupling between rat osteoblast-like cells in vitro. Bone 23, 521–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Taylor, A. F. et al. Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. Am. J. Physiol. Cell Physiol. 292, C545–C552 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Jørgensen, N. R. et al. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms. J. Bone Miner. Res. 15, 1024–1032 (2000).

    Article  PubMed  Google Scholar 

  56. Bonewald, L. F. The amazing osteocyte. J. Bone Miner. Res. 26, 229–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Batra, N. et al. Mechanical stress-activated integrin α5β1 induces opening of connexin 43 hemichannels. Proc. Natl Acad. Sci. USA 109, 3359–3364 (2012).

    Article  PubMed  Google Scholar 

  58. Civitelli, R. Cell-cell communication in the osteoblast/osteocyte lineage. Arch. Biochem. Biophys. 473, 188–192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grimston, S. K., Brodt, M. D., Silva, M. J. & Civitelli, R. Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the connexin 43 gene (Gja1). J. Bone Miner. Res. 23, 879–886 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang, Y. et al. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS ONE 6, e23516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bivi, N. et al. Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice. J. Orthop. Res. 31, 1075–1081 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Lloyd, S. A., Loiselle, A. E., Zhang, Y. & Donahue, H. J. Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling. Bone 57, 76–83 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grimston, S. K. et al. Connexin 43 deficiency reduces the sensitivity of cortical bone to the effects of muscle paralysis. J. Bone Miner. Res. 26, 2151–2160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Robling, A. G. et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283, 5866–5875 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Tu, X. et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50, 209–217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oyamada, M., Takebe, K. & Oyamada, Y. Regulation of connexin expression by transcription factors and epigenetic mechanisms. Biochim. Biophys. Acta 1828, 118–133 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Robinson, J. A. et al. Wnt/β-catenin signaling is a normal physiological response to mechanical loading in bone. J. Biol. Chem. 281, 31720–31728 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Xu, H. et al. Connexin 43 channels are essential for normal bone structure and osteocyte viability. J. Bone Miner. Res. 30, 550–562 (2015).

    CAS  PubMed Central  Google Scholar 

  69. Somoza, R. A., Welter, J. F., Correa, D. & Caplan, A. I. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng. Part B Rev. 20, 596–608 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Eiberger, J. et al. Expression pattern and functional characterization of connexin 29 in transgenic mice. Glia 53, 601–611 (2006).

    Article  PubMed  Google Scholar 

  71. Ralphs, J. R. et al. Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J. Anat. 193, 215–222 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bruehlmann, S. B., Rattner, J. B., Matyas, J. R. & Duncan, N. A. Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J. Anat. 201, 159–171 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hellio Le Graverand, M. P. et al. Formation and phenotype of cell clusters in osteoarthritic meniscus. Arthritis Rheum. 44, 1808–1818 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Gruber, H. E., Ma, D., Hanley, E. N., Ingram, J. & Yamaguchi, D. T. Morphologic and molecular evidence for gap junctions and connexin 43 and 45 expression in annulus fibrosus cells from the human intervertebral disc. J. Orthop. Res. 19, 985–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Knight, M. M., McGlashan, S. R., Garcia, M., Jensen, C. G. & Poole, C. A. Articular chondrocytes express connexin 43 hemichannels and P2 receptors - a putative mechanoreceptor complex involving the primary cilium? J. Anat. 214, 275–283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mayan, M. D. et al. Human articular chondrocytes express multiple gap junction proteins: differential expression of connexins in normal and osteoarthritic cartilage. Am. J. Pathol. 182, 1337–1346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwab, W., Hofer, A. & Kasper, M. Immunohistochemical distribution of connexin 43 in the cartilage of rats and mice. Histochem. J. 30, 413–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Donahue, H. J. et al. Chondrocytes isolated from mature articular cartilage retain the capacity to form functional gap junctions. J. Bone Miner. Res. 10, 1359–1364 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Mayan, M. D. et al. Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis. Ann. Rheum. Dis. 74, 275–284 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. D'Andrea, P. & Vittur, F. Propagation of intercellular Ca2+ waves in mechanically stimulated articular chondrocytes. FEBS Lett. 400, 58–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Schrobback, K., Klein, T. J. & Woodfield, T. B. F. The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models. Tissue Engineer. Part A 21, 1785–1794 (2015).

    Article  CAS  Google Scholar 

  82. Loty, S., Foll, C., Forest, N. & Sautier, J. M. Association of enhanced expression of gap junctions with in vitro chondrogenic differentiation of rat nasal septal cartilage-released cells following their dedifferentiation and redifferentiation. Arch. Oral Biol. 45, 843–856 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Willebrords, J., Maes, M., Crespo Yanguas, S. & Vinken, M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol. Ther. 180, 144–160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Garcia, M. & Knight, M. M. Cyclic loading opens hemichannels to release ATP as part of a chondrocyte mechanotransduction pathway. J. Orthop. Res. 28, 510–515 (2010).

    CAS  PubMed  Google Scholar 

  85. Contreras, J. E. et al. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc. Natl Acad. Sci. USA 99, 495–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Stout, C., Costantin, J., Naus, C. & Charles, A. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J. Biol. Chem. 277, 10482–10488 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Gomes, P., Srinivas, S. P., Van Driessche, W., Vereecke, J. & Himpens, B. ATP release through connexin hemichannels in corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 46, 1208–1218 (2005).

    Article  PubMed  Google Scholar 

  88. Burnstock, G., Arnett, T. R. & Orriss, I. R. Purinergic signalling in the musculoskeletal system. Purinerg. Signal 9, 541–572 (2013).

    Article  CAS  Google Scholar 

  89. Graff, R. D., Lazarowski, E. R., Banes, A. J. & Lee, G. M. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum. 43, 1571–1579 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, J. et al. Connexin 43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthr. Cartilage 22, 822–830 (2014).

    Article  CAS  Google Scholar 

  91. Groth, H. P. Cellular contacts in the synovial membrane of the cat and the rabbit: an ultrastructural study. Cell Tissue Res. 164, 52541 (1975).

    Article  CAS  PubMed  Google Scholar 

  92. Dryll, A., Lansaman, J., Peltier, A. P. & Ryckewaert, A. Cellular junctions in normal and inflammatory human synovial-membrane revealed by tannic-acid and freeze-fracture. Virchows Arch. A Pathol. Anat. Histol. 386, 293–302 (1980).

    Article  CAS  PubMed  Google Scholar 

  93. Kolomytkin, O. V. et al. Gap junctions in human synovial cells and tissue. J. Cell. Physiol. 184, 110–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Capozzi, I., Tonon, R. & D'Andrea, P. Ca2+-sensitive phosphoinositide hydrolysis is activated in synovial cells but not in articular chondrocytes. Biochem. J. 344, 545–553 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. D'Andrea, P., Calabrese, A. & Grandolfo, M. Intercellular calcium signalling between chondrocytes and synovial cells in co-culture. Biochem. J. 329, 681–687 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Merrifield, P. A. & Laird, D. W. Connexins in skeletal muscle development and disease. Semin. Cell Dev. Biol. 50, 67–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. von Maltzahn, J., Euwens, C., Willecke, K. & Söhl, G. The novel mouse connexin 39 gene is expressed in developing striated muscle fibers. J. Cell Sci. 117, 5381–5392 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Belluardo, N., Trovato-Salinaro, A., Mudò, G. & Condorelli, D. F. Expression of the rat connexin 39 (rCx39) gene in myoblasts and myotubes in developing and regenerating skeletal muscles: an in situ hybridization study. Cell Tissue Res. 320, 299–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. von Maltzahn, J., Wulf, V. & Willecke, K. Spatiotemporal expression of connexin 39 and 43 during myoblast differentiation in cultured cells and in the mouse embryo. Cell Commun. Adhes. 13, 55–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. von Maltzahn, J., Wulf, V., Matern, G. & Willecke, K. Connexin 39 deficient mice display accelerated myogenesis and regeneration of skeletal muscle. Exp. Cell Res. 317, 1169–1178 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Dahl, E., Winterhager, E., Traub, O. & Willecke, K. Expression of gap junction genes, connexin 40 and connexin 43, during fetal mouse development. Anat. Embryol. 191, 267–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Balogh, S., Naus, C. C. & Merrifield, P. A. Expression of gap junctions in cultured rat L6 cells during myogenesis. Dev. Biol. 155, 351–360 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Proulx, A., Merrifield, P. A. & Naus, C. Blocking gap junctional intercellular communication in myoblasts inhibits myogenin and MRF4 expression. Dev. Genet. 20, 133–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Yamanouchi, K., Yada, E., Ishiguro, N. & Nishihara, M. 18α-glycyrrhetinic acid induces phenotypic changes of skeletal muscle cells to enter adipogenesis. Cell. Physiol. Biochem. 20, 781–790 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Plotkin, L. I., Davis, H. M., Cisterna, B. A. & Sáez, J. C. Connexins and pannexins in bone and skeletal muscle. Curr. Osteoporosis Rep. 15, 326–334 (2017).

    Article  Google Scholar 

  106. Araya, R. et al. Expression of connexins during differentiation and regeneration of skeletal muscle: functional relevance of connexin 43. J. Cell Sci. 118, 27–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Cea, L. A. et al. De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proc. Natl Acad. Sci. USA 110, 16229–16234 (2013).

    Article  PubMed  Google Scholar 

  108. Cea, L. A. et al. Fast skeletal myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis. Cell. Mol. Life Sci. 73, 2583–2599 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Muramatsu, T. et al. Reduction of connexin 43 expression in aged human dental pulp. Int. Endod J. 37, 814–818 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Yeh, H. I. et al. Age-related alteration of gap junction distribution and connexin expression in rat aortic endothelium. J. Histochem. Cytochem. 48, 1377–1389 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Xie, H. Q. & Hu, V. W. Modulation of gap junctions in senescent endothelial cells. Exp. Cell Res. 214, 172–176 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Boengler, K., Heusch, G. & Schulz, R. Connexin 43 and ischemic preconditioning: effects of age and disease. Exp. Gerontol. 41, 485–488 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Genetos, D. C., Zhou, Z., Li, Z. & Donahue, H. J. Age-related changes in gap junctional intercellular communication in osteoblastic cells. J. Orthop. Res. 30, 1979–1984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kastner, M. et al. Complex interventions can increase osteoporosis investigations and treatment: a systematic review and meta-analysis. Osteoporos Int. 7, 407 (2017).

    Google Scholar 

  115. Schiller, P. C., D'Ippolito, G., Balkan, W., Roos, B. A. & Howard, G. A. Gap-junctional communication mediates parathyroid hormone stimulation of mineralization in osteoblastic cultures. Bone 28, 38–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Plotkin, L. I. et al. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo. J. Bone Miner. Res. 23, 1712–1721 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Loiselle, A. E. et al. Specific biomimetic hydroxyapatite nanotopographies enhance osteoblastic differentiation and bone graft osteointegration. Tissue Eng. Part A 19, 1704–1712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lloyd, S. A., Loiselle, A. E., Zhang, Y. & Donahue, H. J. Shifting paradigms on the role of connexin 43 in the skeletal response to mechanical load. J. Bone Miner. Res. 29, 275–286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Malemud, C. J. Biologic basis of osteoarthritis: state of the evidence. Curr. Opin. Rheumatol 27, 289–294 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Goldring, M. B. & Goldring, S. R. Osteoarthritis. J. Cell. Physiol. 213, 626–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. arcOGEN Consortium et al. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380, 815–823 (2012).

  122. Hellio Le Graverand, M. P. et al. The cells of the rabbit meniscus: their arrangement, interrelationship, morphological variations and cytoarchitecture. J. Anat. 198, 525–535 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Miyamoto, Y. et al. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet. 39, 529–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Chapman, K. et al. A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5′ UTR of GDF5 with osteoarthritis susceptibility. Hum. Mol. Genet. 17, 1497–1504 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Chatterjee, B. et al. BMP regulation of the mouse connexin 43 promoter in osteoblastic cells and embryos. Cell Commun. Adhes. 10, 37–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Coleman, C. M., Loredo, G. A., Lo, C. W. & Tuan, R. S. Correlation of GDF5 and connexin 43 mRNA expression during embryonic development. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 275, 1117–1121 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Marino, A. A. et al. Increased intercellular communication through gap junctions may contribute to progression of osteoarthritis. Clin. Orthop. Relat. Res. 422, 224–232 (2004).

    Article  Google Scholar 

  128. Giepmans, B. N. G. Role of connexin 43-interacting proteins at gap junctions. Adv. Cardiol. 42, 41–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Giepmans, B. N. et al. Gap junction protein connexin-43 interacts directly with microtubules. Curr. Biol. 11, 1364–1368 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Moorby, C. & Patel, M. Dual functions for connexins: Cx43 regulates growth independently of gap junction formation. Exp. Cell Res. 271, 238–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Gago-Fuentes, R. et al. The C-terminal domain of connexin 43 modulates cartilage structure via chondrocyte phenotypic changes. Oncotarget 7, 73055–73067 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gago-Fuentes, R. et al. Proteomic analysis of connexin 43 reveals novel interactors related to osteoarthritis. Mol. Cell. Proteom. 14, 1831–1845 (2015).

    Article  CAS  Google Scholar 

  133. Homandberg, G. A., Meyers, R. & Williams, J. M. Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J. Rheumatol. 20, 1378–1382 (1993).

    CAS  PubMed  Google Scholar 

  134. Homandberg, G. A. & Hui, F. Association of proteoglycan degradation with catabolic cytokine and stromelysin release from cartilage cultured with fibronectin fragments. Arch. Biochem. Biophys. 334, 325–331 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Benito, M. J., Veale, D. J., FitzGerald, O., van den Berg, W. B. & Bresnihan, B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis. 64, 1263–1267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bondeson, J. Are we moving in the right direction with osteoarthritis drug discovery? Expert Opin. Ther. Targets 15, 1355–1368 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Kolomytkin, O. V. et al. IL-1β-induced production of metalloproteinases by synovial cells depends on gap junction conductance. Am. J. Physiol. Cell Physiol. 282, C1254–C1260 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Tonon, R. & D'Andrea, P. Interleukin-1β increases the functional expression of connexin 43 in articular chondrocytes: evidence for a Ca2+-dependent mechanism. J. Bone Miner. Res. 15, 1669–1677 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Tonon, R. & D'Andrea, P. The functional expression of connexin 43 in articular chondrocytes is increased by interleukin 1ß: evidence for a Ca2+-dependent mechanism. Biorheology 39, 153–160 (2002).

    CAS  PubMed  Google Scholar 

  140. Gupta, A. et al. Connexin 43 enhances the expression of osteoarthritis-associated genes in synovial fibroblasts in culture. BMC Musculoskelet Disord. 15, 425 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tsuchida, S. et al. Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis. J. Orthop. Res. 31, 525–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Grek, C. L., Rhett, J. M. & Ghatnekar, G. S. Cardiac to cancer: Connecting connexins to clinical opportunity. FEBS Lett. 588, 1349–1364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Baklaushev, V. P. et al. Treatment of glioma by cisplatin-loaded nanogels conjugated with monoclonal antibodies against Cx43 and BSAT1. Drug Delivery 22, 276–285 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by grants from the NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases, R01AR068132-17 (to H.J.D.), R01AR 064255–05 (to D.C.G.) and a Virginia Commonwealth University School of Engineering Foundation Endowment (to H.J.D.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Henry J. Donahue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Cre-lox recombination

A site-specific recombinase technology that is used to produce deletions, insertions, translocations and inversions at specific sites in the DNA of cells.

Anabolic loading

Mechanical loading that increases the abundance of bone.

Pannexin channels

A family of vertebrate proteins that predominantly exist as large transmembrane channels connecting the intracellular and extracellular space.

Chondron pellets

Groups of chondrocytes and their adjacent pericellular environment that have been centrifuged to form dense pellets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donahue, H., Qu, R. & Genetos, D. Joint diseases: from connexins to gap junctions. Nat Rev Rheumatol 14, 42–51 (2018). https://doi.org/10.1038/nrrheum.2017.204

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.204

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing