Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular genetics and clinical features of Birt–Hogg–Dubé syndrome

Key Points

  • Birt–Hogg–Dubé (BHD) syndrome is an autosomal dominant inherited renal cancer disorder that predisposes at-risk individuals to benign, cutaneous fibrofolliculomas, pulmonary cysts, spontaneous pneumothoraces and increased risk of renal neoplasia

  • Renal tumours that develop in the setting of BHD syndrome are most often bilateral, multifocal hybrid oncocytic tumours and chromophobe renal cell carcinomas, but patients can present with other histologies

  • Germline mutations in FLCN, predicted to prematurely truncate the protein, predispose to BHD syndrome; renal tumours show somatic inactivation or loss of the remaining FLCN allele, confirming a tumour suppressor function

  • FLCN interacts with the novel proteins FNIP1 and FNIP2, as well as AMPK, a negative regulator of mTOR, and acts to modulate the AKT–TOR pathway

  • Other pathways in which FLCN might have a role include regulation of TFE3 and TFEB transcriptional activity, amino-acid-dependent mTOR activation through Rag GTPases, TGFβ signalling, PGC1α-driven mitochondrial biogenesis, and autophagy

  • Surgery is currently the only available therapy for BHD-associated renal tumours, but elucidation of FLCN-interacting pathways, deregulated in FLCN-deficient renal cancer, will hopefully enable the development of effective targeted therapies

Abstract

Birt–Hogg–Dubé (BHD) syndrome is an inherited renal cancer syndrome in which affected individuals are at risk of developing benign cutaneous fibrofolliculomas, bilateral pulmonary cysts and spontaneous pneumothoraces, and kidney tumours. Bilateral multifocal renal tumours that develop in BHD syndrome are most frequently hybrid oncocytic tumours and chromophobe renal carcinoma, but can present with other histologies. Germline mutations in the FLCN gene on chromosome 17 are responsible for BHD syndrome—BHD-associated renal tumours display inactivation of the wild-type FLCN allele by somatic mutation or chromosomal loss, confirming that FLCN is a tumour suppressor gene that fits the classic two-hit model. FLCN interacts with two novel proteins, FNIP1 and FNIP2, and with AMPK, a negative regulator of mTOR. Studies with FLCN-deficient cell and animal models support a role for FLCN in modulating the AKT–mTOR pathway. Emerging evidence links FLCN with a number of other molecular pathways and cellular processes important for cell homeostasis that are frequently deregulated in cancer, including regulation of TFE3 and/or TFEB transcriptional activity, amino-acid-dependent mTOR activation through Rag GTPases, TGFβ signalling, PGC1α-driven mitochondrial biogenesis, and autophagy. Currently, surgical intervention is the only therapy available for BHD-associated renal tumours, but improved understanding of the FLCN pathway will hopefully lead to the development of effective forms of targeted systemic therapy for this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cutaneous and pulmonary manifestations of Birt–Hogg–Dubé (BHD) syndrome.
Figure 2: Renal manifestations of Birt–Hogg–Dubé (BHD) syndrome.
Figure 3: Birt–Hogg–Dubé (BHD) renal tumour histology.
Figure 4: Phenotypic heterogeneity in a family affected with Birt–Hogg–Dubé (BHD) syndrome.
Figure 5: Germline FLCN mutations responsible for Birt–Hogg–Dubé (BHD) syndrome.
Figure 6: Somatic second hit FLCN mutations in multiple renal tumours from a Birt–Hogg–Dubé (BHD)-affected patient with a germline FLCN mutation.
Figure 7: FLCN-interacting proteins and associated pathways that might contribute to renal tumorigenesis under FLCN deficiency.

Similar content being viewed by others

References

  1. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

  4. Nickerson, M. L. et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14, 4726–4734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Tomlinson, I.P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Nickerson, M. L. et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome. Cancer Cell 2, 157–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Birt, A. R., Hogg, G. R. & Dubé, W. J. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch. Dermatol. 113, 1674–1677 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Pinkus, H., Coskey, R. J. & Burgess, G. A. Trichodiscoma: A benign tumor relating to haarscheibe (hair disc). J. Invest. Dermatol. 63, 212 (1974).

    Article  CAS  PubMed  Google Scholar 

  10. Hornstein, O. P. & Knickenberg, M. Perifollicular fibromatosis cutis with polyps of the colon—a cutaneo-intestinal syndrome sui generis. Arch. Dermatol. Res. 253, 161–175 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Binet, O., Robin, J., Vicart, M., Ventura, G. & Beltzer-Garelly, E. Fibromes perifolliculaires polypose colique familiale pneumothorax spontanes familiaux. Ann. Dermatol. Venereo. 113, 928–930 (1986).

    Google Scholar 

  12. Chung, J. Y., Ramos-Caro, F. A., Beers, B., Ford, M. J. & Flowers, F. Multiple lipomas, angiolipomas, and parathyroid adenomas in a patient with Birt-Hogg-Dubé syndrome. Int. J. Dermatol. 35, 365–367 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Toro, J. R. et al. Birt-Hogg-Dubé syndrome: a novel marker of kidney neoplasia. Arch. Dermatol. 135, 1195–1202 (1999).

    CAS  PubMed  Google Scholar 

  14. Roth, J. S., Rabinowitz, A. D., Benson, M. & Grossman, M. E. Bilateral renal cell carcinoma in the Birt-Hogg-Dubé syndrome. J. Am. Acad. Dermatol. 29, 1055–1056 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Zbar, B. et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dubé syndrome. Cancer Epidemiol. Biomarkers Prev. 11, 393–400 (2002).

    PubMed  Google Scholar 

  16. Schmidt, L. S. et al. Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dubé syndrome. Am. J. Hum. Genet. 76, 1023–1033 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Toro, J. R. et al. BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dubé syndrome: a new series of 50 families and a review of published reports. J. Med. Genet. 45, 321–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Leter, E. M. et al. Birt-Hogg-Dubé syndrome: clinical and genetic studies of 20 families. J. Invest. Dermatol. 128, 45–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Kluger, N. et al. Birt-Hogg-Dubé syndrome: clinical and genetic studies of 10 French families. Br. J. Dermatol. 162, 527–537 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Vernooij, M., Claessens, T., Luijten, M., van Steensel, M. A. & Coull, B. J. Birt-Hogg-Dubé syndrome and the skin. Fam. Cancer 12, 381–385 (2013).

    Article  PubMed  Google Scholar 

  21. Schulz, T. & Hartschuh, W. Birt-Hogg-Dubé syndrome and Hornstein-Knickenberg syndrome are the same. Different sectioning technique as the cause of different histology. J. Cutan. Pathol. 26, 55–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Kunogi, M. et al. Clinical and genetic spectrum of Birt-Hogg-Dubé syndrome patients in whom pneumothorax and/or multiple lung cysts are the presenting feature. J. Med. Genet. 47, 281–287 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Gunji, Y. et al. Mutations of the Birt-Hogg-Dubé´ gene in patients with multiple lung cysts and recurrent pneumothorax. J. Med. Genet. 44, 588–593 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Toro, J. R. et al. Lung cysts, spontaneous pneumothorax, and genetic associations in 89 families with Birt-Hogg-Dubé syndrome. Am. J. Respir. Crit. Care Med. 175, 1044–1053 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ayo, D. S., Aughenbaugh, G. L., Yi, E. S., Hand, J. L. & Ryu, J. H. Cystic lung disease in Birt-Hogg-Dubé´syndrome. Chest 132, 679–684 (2007).

    Article  PubMed  Google Scholar 

  26. Gupta, N., Seyama, K. & McCormack, F. X. Pulmonary manifestations of Birt-Hogg-Dubé syndrome. Fam. Cancer 12, 387–396 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tobino, K. et al. Characteristics of pulmonary cysts in Birt-Hogg-Dubé syndrome: thin-section CT findings of the chest in 12 patients. Eur. J. Radiol. 77, 403–409 (2011).

    Article  PubMed  Google Scholar 

  28. Bessis, D., Giraud, S. & Richard, S. A novel familial germline mutation in the initiator codon of the BHD gene in a patient with Birt-Hogg-Dubé syndrome. Br. J. Dermatol. 155, 1067–1069 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Houweling, A. C. et al. Renal cancer and pneumothorax risk in Birt-Hogg-Dubé syndrome; an analysis of 115 FLCN mutation carriers from 35 BHD families. Br. J. Cancer 105, 1912–1919 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Benusiglio, P. R. et al. Renal cell tumour characteristics in patients with the Birt-Hogg-Dubé cancer susceptibility syndrome: a retrospective, multicentre study. Orphanet J. Rare Dis. 9, 163 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Khoo, S. K. et al. Clinical and genetic studies of Birt-Hogg-Dubé syndrome. J. Med. Genet. 39, 906e12 (2002).

    Article  Google Scholar 

  32. Pavlovich, C. P. et al. Renal tumors in the Birt-Hogg-Dubé syndrome. Am. J. Surg. Pathol. 26, 1542–1552 (2002).

    Article  PubMed  Google Scholar 

  33. Pavlovich, C. P. et al. Evaluation and management of renal tumors in the Birt-Hogg-Dubé syndrome. J. Urol. 173, 1482–1486 (2005).

    Article  PubMed  Google Scholar 

  34. Adamy, A. et al. Renal oncocytosis: management and clinical outcomes. J. Urol. 185, 795–801 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tickoo, S. K. et al. Renal oncocytosis: A morphologic study of fourteen cases. Am. J. Surg. Pathol. 23, 1094–1101 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, V., Kwan, T., Page, E. H. Parotid oncocytoma in the Birt-Hogg-Dubé syndrome. J. Am. Acad. Dermatol. 43, 1120–1122 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Maffé, A. et al. Constitutional FLCN mutations in patients with suspected Birt-Hogg-Dubé syndrome ascertained for non-cutaneous manifestations. Clin. Genet. 79, 345–354 (2011).

    Article  PubMed  CAS  Google Scholar 

  38. Pradella, L. M. et al. Where Birt-Hogg-Dubé meets Cowden syndrome: mirrored genetic defects in two cases of syndromic oncocytic tumours. Eur. J. Hum. Genet. 21, 1169–1172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rongioletti, F., Hazini, R., Gianotti, G. & Rebora, A. Fibrofolliculomas, trichodiscomas and achrocordons (Birt-Hogg-Dubé) associated with intestinal polyposis. Clin. Exp. Dermatol. 14, 72–74 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Le Guyadec, T. et al. Multiple trichodiscomas associated with colonic polyposis. Ann. Dermatol. Venereol. 125, 717–719 (1998).

    CAS  PubMed  Google Scholar 

  41. Nahorski, M. S. et al. Investigation of the Birt-Hogg-Dubé´ tumour suppressor gene (FLCN) in familial and sporadic colorectal cancer. J. Med. Genet. 47, 385–390 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Weirich, G. et al. Familial renal oncocytoma: clinicopathological study of 5 families. J. Urol. 160, 335–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt, L. S. et al. Birt-Hogg-Dubé syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am. J. Hum. Genet. 69, 876–882 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khoo, S. K. et al. Birt-Hogg-Dubé syndrome: mapping of a novel hereditary neoplasia gene to chromosome 17p12q11.2. Oncogene 20, 5239–5242 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Lim, D. H. et al. A new locus-specific database (LSDB) for mutations in the folliculin (FLCN) gene. Hum. Mutat. 31, E1043–1051 (2010).

    Article  PubMed  Google Scholar 

  46. Leiden Open Variation Database. European Birt-Hogg-Dubé Consortium LOVD Gene homepage for FLCN [online], (2015).

  47. Benhammou, J. N. et al. Identification of intragenic deletions and duplication in the FLCN gene in Birt-Hogg-Dubé syndrome. Genes Chromosomes Cancer 50, 466–477 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sempau, L., Ruiz, I., González-Morán, A., Susanna, X. & Hansen, T. V. New mutation in the Birt Hogg Dubé gene. Actas Dermosifiliogr. 101, 637–640 (2010).

    Article  PubMed  Google Scholar 

  49. Nahorski, M. S. et al. Birt Hogg-Dubé syndrome-associated FLCN mutations disrupt protein stability. Hum. Mutat. 32, 921–929 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Shin, J.H. et al. Mutations of the Birt Hogg Dubé (BHD) gene in sporadic colorectal carcinomas and colorectal carcinoma cell lines with microsatellite instability. J. Med. Genet. 40, 364–367 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vocke, C. D. et al. High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dubé-associated renal tumors. J. Natl Cancer Inst. 97, 931–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Lingaas, F. et al. A mutation in the canine BHD gene is associated with hereditary multifocal renal cystadenocarcinoma and nodular dermatofibrosis in the German shepherd dog. Hum. Mol. Genet. 12, 3043–3053 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Okimoto, K. et al. A germ-line insertion in the Birt Hogg Dubé (BHD) gene gives rise to the Nihon rat model of inherited renal cancer. Proc. Natl Acad. Sci. USA 101, 2023–2027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, Y. et al. The UOK 257 cell line: a novel model for studies of the human Birt-Hogg-Dubé gene pathway. Cancer Genet. Cytogenet. 180, 100–109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hong, S. B. et al. Tumor suppressor FLCN inhibits tumorigenesis of a FLCN-null renal cancer cell line and regulates expression of key molecules in TGF-beta signaling. Mol. Cancer 9, 160 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hudon, V. et al. Renal tumour suppressor function of the Birt-Hogg-Dubé syndrome gene product folliculin. J. Med. Genet. 47, 182–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Gad, S. et al. Mutations in BHD and TP53 genes, but not in HNF1beta gene, in a large series of sporadic chromophobe renal cell carcinoma. Br. J. Cancer 96, 336–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Khoo, S. K. et al. Inactivation of BHD in sporadic renal tumors. Cancer Res. 63, 4583–4587 (2003).

    CAS  PubMed  Google Scholar 

  61. Fernandez da Silva, N. et al. Analysis of the Birt-Hogg-Dubé (BHD) tumour suppressor gene in sporadic renal cell carcinoma and colorectal cancer. J. Med. Genet. 40, 820–824 (2003).

    Article  Google Scholar 

  62. Nagy, A., Zoubakov, D., Stupar, Z. & Kovacs, G. Lack of mutation of the folliculin gene in sporadic chromophobe renal cell carcinoma and renal oncocytoma. Int. J. Cancer 109, 472–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Davis, C. F. et al. The Cancer Genome Atlas Research Network. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26, 319–330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baba, M. et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc. Natl Acad. Sci. USA 103, 15552–15557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shaw, R. J. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol. (Oxf.) 196, 65–80 (2009).

    Article  CAS  Google Scholar 

  66. Wang, L. et al. Serine 62 is a phosphorylation site in folliculin, the Birt-Hogg-Dubé gene product. FEBS Lett. 584, 39–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Hasumi, H. et al. Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene 415, 60–67 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Takagi, Y. et al. Interaction of folliculin (Birt-Hogg-Dubé gene product) with a novel Fnip1-like (FnipL/Fnip2) protein. Oncogene 27, 5339–5347 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Komori, K. et al. Anovel protein, MAPO1, that functions in apoptosis triggered by O6-methylguanine mispair in DNA. Oncogene 28, 1142–1150 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Baba, M. et al. The Folliculin-FNIP1 pathway deleted in human Birt-Hogg-Dubé syndrome is required for mouse B cell development. Blood 120, 1254–1261 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hasumi, H. et al. Folliculin-interacting proteins Fnip1 and Fnip2 play critical roles in kidney tumor suppression in cooperation with Flcn. Proc. Natl Acad. Sci. USA 112, E1624–E1631 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Park, H. et al. Disruption of Fnip1 reveals a metabolic checkpoint controlling B lymphocyte development. Immunity 36, 769–781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baba, M. et al. Kidney-targeted Birt-Hogg-Dubé gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J. Natl Cancer Inst. 100, 140–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, J. et al. Deficiency of FLCN in mouse kidney led to development of polycystic kidneys and renal neoplasia. PLoS ONE 3, e3581 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hasumi, Y. et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc. Natl Acad. Sci. USA 106, 18722–18727 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hartman, T. R. et al. The role of the Birt-Hogg-Dubé protein in mTOR activation and renal tumorigenesis. Oncogene 28, 1594–1604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van Slegtenhorst, M. et al. The Birt-Hogg-Dubé and tuberous sclerosis complex homologs have opposing roles in amino acid homeostasis in Schizosaccharomyces pombe. J. Biol. Chem. 282, 24583–24590 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Bar-Peled, L. & Sabatini, D. M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 24, 400–406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsun, Z. Y. et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52, 495–505 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Petit, C. S., Roczniak-Ferguson, A. & Ferguson, S. M. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 202, 1107–1122 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nookala, R. K. et al. Crystal structure of folliculin reveals a hidDENN function in genetically inherited renal cancer. Open Biol. 2, 120071 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hong, S. B. et al. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS ONE 5, e15793 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Betschinger, J. et al. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 153, 335–347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wolf, A. et al. The armadillo protein p0071 regulates Rho signalling during cytokinesis. Nat. Cell Biol. 8, 1432–1440 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Medvetz, D. A. et al. Folliculin, the product of the Birt-Hogg-Dubé tumor suppressor gene, interacts with the adherens junction protein p0071 to regulate cell–cell adhesion. PLoS ONE 7, e47842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nahorski, M. S. et al. Folliculin interacts with p0071 (plakophilin4) and deficiency is associated with disordered RhoA signalling, epithelial polarization and cytokinesis. Hum. Mol. Genet. 21, 5268–5279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Khabibullin, D. et al. Folliculin regulates cell-cell adhesion, AMPK, and mTORC1 in a celltypespecific manner in lung-derived cells. Physiol. Rep. 2, e12107 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Goncharova, E. A. et al. Folliculin controls lung alveolar enlargement and epithelial cell survival through Ecadherin, LKB1 and AMPK. Cell Rep. 7, 412–423 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cash, T. P., Gruber, J. J., Hartman, T. R., Henske, E. P. & Simon, M. C. Loss of the Birt-Hogg-Dubé tumor suppressor results in apoptotic resistance due to aberrant TGFβ-mediated transcription. Oncogene 30, 2534–2546 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Possik, E. et al. Folliculin regulates ampk-dependent autophagy and metabolic stress survival. PLoS Genet. 10, e1004273 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Dunlop, E. A. et al. FLCN, a novel autophagy component, interacts with GABARAP and is regulated by ULK1 phosphorylation. Autophagy 10, 1749–1760 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stamatakis, L., Metwalli, A. R., Middelton, L. A. & Linehan, W. M. Diagnosis and management of BHD-associated kidney cancer. Fam. Cancer 12, 397–402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Menko, F. H. et al. European BHD Consortium. Birt-Hogg-Dubé syndrome: diagnosis and management. Lancet Oncol. 10, 1199–1206 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Jamis-Dow, C. A. et al. Small (≤3 cm) renal masses: detection with CT versus US and pathologic correlation. Radiology 198, 785–788 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Waldert, M. et al. Hybrid renal cell carcinomas containing histopathologic features of chromophobe renal cell carcinomas and oncocytomas have excellent oncologic outcomes. Eur. Urol. 57, 661–665 (2010).

    Article  PubMed  Google Scholar 

  97. Boris, R. S. et al. The impact of germline BHD mutation on histological concordance and clinical treatment of patients with bilateral renal masses and known unilateral oncocytoma. J. Urol. 185, 2050–2055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hes, O., Petersson, F., Kuroda, N., Hora, M. & Michal, M. Renal hybrid oncocytic/ chromophobe tumors—a review. Histol. Histopathol. 28, 1257–1264 (2013).

    PubMed  Google Scholar 

  99. Kowalczyk, K. J. et al. Partial nephrectomy after previous radio frequency ablation: the National Cancer Institute experience. J. Urol. 182, 2158–2163 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wile, G. E., Leyendecker, J. R., Krehbiel, K. A., Dyer, R. B. & Zagoria, R. J. CT and MR imaging after imaging-guided thermal ablation of renal neoplasms. Radiographics 27, 325–339 (2007).

    Article  PubMed  Google Scholar 

  101. Furuya, M. et al. Distinctive expression patterns of glycoprotein non-metastatic B and folliculin in renal tumors in patients with Birt-Hogg-Dubé syndrome. Cancer Sci. 106, 315–23 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tickoo, S. K. et al. Ultrastructural observations on mitochondria and microvesicles in renal oncocytoma, chromophobe renal cell carcinoma, and eosinophilic variant of conventional (clear cell) renal cell carcinoma. Am. J. Surg. Pathol. 24, 1247–1256 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Gasparre, G. et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum. Mol. Genet. 17, 986–995 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Klomp, J. A. et al. Birt-Hogg-Dubé renal tumors are genetically distinct from other renal neoplasias and are associated with up-regulation of mitochondrial gene expression. BMC Med. Genomics 3, 59 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hasumi, H. et al. Regulation of mitochondrial oxidative metabolism by tumor suppressor FLCN. J. Natl Cancer Inst. 104, 1750–1764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hasumi, Y. et al. Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation. Hum. Mol. Genet. 23, 5706–5719 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shuch, B. et al. Targeting the mTOR pathway in Chromophobe Kidney Cancer. J. Cancer 3, 152–157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nakamura, M. et al. A case of metastatic renal cell carcinoma associated with Birt-Hogg-Dubé syndrome treated with molecular-targeting agents [Japanese]. Hinyokika Kiyo 59, 503–506 (2013).

    PubMed  Google Scholar 

  109. Lu, X. et al. Therapeutic targeting the loss of the Birt-Hogg-Dubé suppressor gene. Mol. Cancer Ther. 10, 80–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Lu, X. et al. Knockdown of Slingshot 2 (SSH2) serine phosphatase induces Caspase3 activation in human carcinoma cell lines with the loss of the Birt-Hogg-Dubé tumour suppressor gene (FLCN). Oncogene 33, 956–965 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Preston, R. S. et al. Absence of the Birt-Hogg-Dubé gene product is associated with increased hypoxia-inducible factor transcriptional activity and a loss of metabolic flexibility. Oncogene 30, 1159–1173 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Yan, M. et al. The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. J. Clin. Invest. 124, 2640–2650 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Murakami, T. et al. Identification and characterization of Birt-Hogg-Dubé-associated renal carcinoma. J. Pathol. 211, 524–531 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute (NCI), Centre for Cancer Research. This project has been funded in part with Federal funds from the Frederick National Laboratory for Cancer Research, NIH, under Contract HHSN261200800001E (L.S.S.). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsements by the US Government. L.S.S. is an employee of Basic Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data for article and made substantial contributions to discussion of content, as well as writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Laura S. Schmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, L., Linehan, W. Molecular genetics and clinical features of Birt–Hogg–Dubé syndrome. Nat Rev Urol 12, 558–569 (2015). https://doi.org/10.1038/nrurol.2015.206

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing