Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2

Abstract

Unlike bacteria, a specialized eukaryotic initiation factor (eIF)-2, in the form of the ternary complex eIF2–GTP–Met-tRNAi Met, is used to deliver the initiator tRNA to the ribosome in all eukaryotic cells. Here we show that the hepatitis C virus (HCV) internal ribosome entry site (IRES) can direct translation without eIF2 and its GTPase-activating protein eIF5. In addition to the general eIF2- and eIF5-dependent pathway of 80S complex assembly, the HCV IRES makes use of a bacterial-like pathway requiring as initiation factors only eIF5B (an analog of bacterial IF2) and eIF3. The switch from the conventional eukaryotic mode of translation initiation to the eIF2-independent mechanism occurs when eIF2 is inactivated by phosphorylation under stress conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly of translation initiation complexes on the HCV IRES and β-globin mRNAs and their analysis by sucrose density gradient centrifugation.
Figure 2: 80S complexes formed without eIF2 are competent for translational elongation.
Figure 3: eIF2 phosphorylation activates the alternative pathway for 80S formation on the HCV IRES in RRL.
Figure 4: HCV IRES–directed translation is relatively resistant to eIF2 inactivation in vivo.
Figure 5: Alternative pathways of the 80S initiation complex formation on the HCV IRES.

Similar content being viewed by others

References

  1. Gualerzi, C.O. et al. Initiation factors in the early events of mRNA translation in bacteria. Cold Spring Harb. Symp. Quant. Biol. 66, 363–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Allen, G.S. & Frank, J. Structural insights on the translation initiation complex: ghosts of a universal initiation complex. Mol. Microbiol. 63, 941–950 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Hershey, J.B.W. & Merrick, W.C. The Pathway and Mechanism of Initiation of Protein Synthesis. in Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J. & Merrick, W.C.) 33–88 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000).

    Google Scholar 

  4. Ron, D. & Harding, H.P. eIF2α Phosphorylation in Cellular Stress Responses and Disease. in Translational Control in Biology and Medicine (eds. Mathews, M.B., Sonenberg, N. & Hershey, J.W.B.) 345–368 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2006).

    Google Scholar 

  5. Belsham, G.J. & Jackson, R.J. Translation Initiation on Picornavirus RNA. in Translational Control (eds. Sonenberg, N., Hershey, J.B.W. & Mathews, M.B.) 869–900 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000).

    Google Scholar 

  6. Pestova, T.V., Shatsky, I.N., Fletcher, S.P., Jackson, R.J. & Hellen, C.U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 12, 67–83 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pisarev, A.V. et al. Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J. Virol. 78, 4487–4497 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi, S.K., Lee, J.H., Zoll, W.L., Merrick, W.C. & Dever, T.E. Promotion of Met-tRNAi Met binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280, 1757–1760 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Pestova, T.V., Lorsch, J.R. & Hellen, C.U.T. The Mechanism of Translation Initiation in Eukaryotes. in Translational Control in Biology and Medicine (eds. Mathews, M.B., Sonenberg, N. & Hershey, J.B.W.) 87–128 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2007).

    Google Scholar 

  10. Locker, N., Easton, L.E. & Lukavsky, P.J. HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly. EMBO J. 26, 795–805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pestova, T.V. et al. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403, 332–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Peterson, D.T., Merrick, W.C. & Safer, B. Binding and release of radiolabeled eukaryotic initiation factors 2 and 3 during 80 S initiation complex formation. J. Biol. Chem. 254, 2509–2516 (1979).

    CAS  PubMed  Google Scholar 

  13. Peterson, D.T., Safer, B. & Merrick, W.C. Role of eukaryotic initiation factor 5 in the formation of 80 S initiation complexes. J. Biol. Chem. 254, 7730–7735 (1979).

    CAS  PubMed  Google Scholar 

  14. Roll-Mecak, A., Cao, C., Dever, T.E. & Burley, S.K. X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103, 781–792 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lancaster, A.M., Jan, E. & Sarnow, P. Initiation factor-independent translation mediated by the hepatitis C virus internal ribosome entry site. RNA 12, 894–902 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andreev, D.E., Terenin, I.M., Dunaevsky, Y.E., Dmitriev, S.E. & Shatsky, I.N. A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors. Mol. Cell. Biol. 26, 3164–3169 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Costa-Mattioli, M., Svitkin, Y. & Sonenberg, N. La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Mol. Cell. Biol. 24, 6861–6870 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Otto, G.A. & Puglisi, J.D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Farrell, P.J., Balkow, K., Hunt, T., Jackson, R.J. & Trachsel, H. Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell 11, 187–200 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. McEwen, E. et al. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J. Biol. Chem. 280, 16925–16933 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Brush, M.H., Weiser, D.C. & Shenolikar, S. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 α to the endoplasmic reticulum and promotes dephosphorylation of the α subunit of eukaryotic translation initiation factor 2. Mol. Cell. Biol. 23, 1292–1303 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Honda, M. et al. Cell cycle regulation of hepatitis C virus internal ribosomal entry site-directed translation. Gastroenterology 118, 152–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Rivas-Estilla, A.M. et al. PKR-dependent mechanisms of gene expression from a subgenomic hepatitis C virus clone. J. Virol. 76, 10637–10653 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robert, F. et al. Initiation of protein synthesis by hepatitis C virus is refractory to reduced eIF2·GTP·Met-tRNAiMet ternary complex availability. Mol. Biol. Cell 17, 4632–4644 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nishiyama, T. et al. Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes. Nucleic Acids Res. 31, 2434–2442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jan, E. & Sarnow, P. Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J. Mol. Biol. 324, 889–902 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Garber, K. Hepatitis C: staying the course. Nat. Biotechnol. 25, 1379–1381 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Bakhshesh, M. et al. The picornavirus avian encephalomyelitis virus possesses a hepatitis C virus-like internal ribosome entry site element. J. Virol. 82, 1993–2003 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kaminski, A., Belsham, G.J. & Jackson, R.J. Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site. EMBO J. 13, 1673–1681 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pestova, T.V., Hellen, C.U. & Shatsky, I.N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell. Biol. 16, 6859–6869 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reynolds, J.E. et al. Internal initiation of translation of hepatitis C virus RNA: the ribosome entry site is at the authentic initiation codon. RNA 2, 867–878 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Reynolds, J.E. et al. Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J. 14, 6010–6020 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Merrick, W.C. & Anderson, W.F. Purification and characterization of homogeneous protein synthesis initiation factor M1 from rabbit reticulocytes. J. Biol. Chem. 250, 1197–1206 (1975).

    CAS  PubMed  Google Scholar 

  35. Choi, S.K. et al. Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2. Mol. Cell. Biol. 20, 7183–7191 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dmitriev, S.E., Pisarev, A.V., Rubtsova, M.P., Dunaevsky, Y.E. & Shatsky, I.N. Conversion of 48S translation preinitiation complexes into 80S initiation complexes as revealed by toeprinting. FEBS Lett. 533, 99–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Terenin, I.M. et al. A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry. Mol. Cell. Biol. 25, 7879–7888 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dmitriev, S.E. et al. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5′ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol. Cell. Biol. 27, 4685–4697 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L.P. Ovchinnikov (Institute of Protein Research, Pushchino, Russia) for the kind gift of eEF2 and W.C. Merrick (Case Western Reserve University, Cleveland, USA) for anti-eIF2α antibodies. We appreciate the advice from P. Lukavsky on eIF5B expression. We are also grateful to G. Belsham, A. Hinnebusch and N. Sonenberg for critical reading of the manuscript and valuable suggestions. This work was supported by grants 07-04-01222 and 05-04-49704 from the Russian Foundation for Basic Research (RFBR) to I.M.T. and I.N.S., respectively.

Author information

Authors and Affiliations

Authors

Contributions

I.M.T. and S.E.D. contributed equally to this work. I.M.T. and D.E.A. performed in vitro experiments; S.E.D. carried out cell transfection studies; and I.N.S., S.E.D. and I.M.T. wrote the article. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ivan N Shatsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terenin, I., Dmitriev, S., Andreev, D. et al. Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nat Struct Mol Biol 15, 836–841 (2008). https://doi.org/10.1038/nsmb.1445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing