Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation

Abstract

Methylation of histone 3 lysine 4 (H3K4) by yeast Set1-COMPASS requires prior monoubiquitination of histone H2B. To define whether other residues within the histones are also required for H3K4 methylation, we systematically generated a complete library of the alanine substitutions of all of the residues of the four core histones in Saccharomyces cerevisiae. From this study we discovered that 18 residues within the four histones are essential for viability on complete growth media. We also identified several cis-regulatory residues on the histone H3 N-terminal tail, including histone H3 lysine 14 (H3K14), which are required for normal levels of H3K4 trimethylation. Several previously uncharacterized trans-regulatory residues on histones H2A and H2B form a patch on nucleosomes and are required for methylation mediated by COMPASS. This library will be a valuable tool for defining the role of histone residues in processes requiring chromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the experimental procedure.
Figure 2: Key to the organization of the SHIMA library.
Figure 3: Identification of amino acid mutations essential for viability under normal growth conditions.
Figure 4: GPS analyses to defining amino acid residues of histone H3 and H4 required for proper H3K4 methylation.
Figure 5: GPS analyses in defining amino acid residues of histones H2A and H2B required for proper H3K4 methylation.
Figure 6: Identification of a nucleosomal patch regulating the H3K4 methylation pattern.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kornberg, R.D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75, 243–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Mito, Y., Henikoff, J.G. & Henikoff, S. Histone replacement marks the boundaries of cis-regulatory domains. Science 315, 1408–1411 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Polo, S.E., Roche, D. & Almouzni, G. New histone incorporation marks sites of UV repair in human cells. Cell 127, 481–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Lacoste, N. & Almouzni, G. Epigenetic memory: H3.3 steps in the groove. Nat. Cell Biol. 10, 7–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Bhaumik, S.R., Smith, E. & Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Berger, S.L. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12, 142–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. van Leeuwen, F., Gafken, P.R. & Gottschling, D.E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Ng, H.H. et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schneider, J., Bajwa, P., Johnson, F.C., Bhaumik, S.R. & Shilatifard, A. Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. J. Biol. Chem. 281, 37270–37274 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Masumoto, H., Hawke, D., Kobayashi, R. & Verreault, A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, F., Zhang, K. & Grunstein, M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121, 375–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Nagy, P.L., Griesenbeck, J., Kornberg, R.D. & Cleary, M.L. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl. Acad. Sci. USA 99, 90–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Krogan, N.J. et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 11, 721–729 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Schneider, J. et al. Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol. Cell 19, 849–856 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Miller, T. et al. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl. Acad. Sci. USA 98, 12902–12907 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roguev, A. et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 20, 7137–7148 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA 99, 8695–8700 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krogan, N.J. et al. COMPASS, a histone H3 (lysine 4) methyltransferase required for telomeric silencing of gene expression. J. Biol. Chem. 277, 10753–10755 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Krogan, N.J. et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207–4218 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berger, S.L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Xiao, T. et al. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17, 654–663 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, C.L. et al. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 3, e328 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hughes, C.M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13, 587–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Dover, J. et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J. Biol. Chem. 277, 28368–28371 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Sun, Z.W. & Allis, C.D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, J., Hake, S.B. & Roeder, R.G. The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol. Cell 20, 759–770 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, B. et al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol. Cell 20, 601–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Pavri, R. et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703–717 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kirmizis, A. et al. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449, 928–932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guccione, E. et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449, 933–937 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Matsubara, K., Sano, N., Umehara, T. & Horikoshi, M. Global analysis of functional surfaces of core histones with comprehensive point mutants. Genes Cells 12, 13–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Schneider, J., Dover, J., Johnston, M. & Shilatifard, A. Global proteomic analysis of S. cerevisiae (GPS) to identify proteins required for histone modifications. Methods Enzymol. 377, 227–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Kayne, P.S. et al. Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55, 27–39 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9, 2770–2779 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Luger, K. Structure and dynamic behavior of nucleosomes. Curr. Opin. Genet. Dev. 13, 127–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Muthurajan, U.M. et al. Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO J. 23, 260–271 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park, J.H., Cosgrove, M.S., Youngman, E., Wolberger, C. & Boeke, J.D. A core nucleosome surface crucial for transcriptional silencing. Nat. Genet. 32, 273–279 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, B. et al. The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev. 19, 1668–1673 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robzyk, K., Recht, J. & Osley, M.A. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501–504 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Wood, A. et al. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol. Cell 11, 267–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Hwang, W.W. et al. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol. Cell 11, 261–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Wood, A., Schneider, J., Dover, J., Johnston, M. & Shilatifard, A. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 278, 34739–34742 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Wood, A., Schneider, J., Dover, J., Johnston, M. & Shilatifard, A. The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. Mol. Cell 20, 589–599 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Wood, A., Schneider, J. & Shilatifard, A. Cross-talking histones: implications for the regulation of gene expression and DNA repair. Biochem. Cell Biol. 83, 460–467 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Wood, A. et al. Ctk complex-mediated regulation of histone methylation by COMPASS. Mol. Cell. Biol. 27, 709–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Laribee, R.N. et al. BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr. Biol. 15, 1487–1493 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Xiao, T. et al. The RNA polymerase II kinase Ctk1 regulates positioning of a 5′ histone methylation boundary along genes. Mol. Cell. Biol. 27, 721–731 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, J.S. et al. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131, 1084–1096 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Howe, L. et al. Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev. 15, 3144–3154 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Govind, C.K., Zhang, F., Qiu, H., Hofmeyer, K. & Hinnebusch, A.G. Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol. Cell 25, 31–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Martin, D.G. et al. The Yng1p plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3. Mol. Cell. Biol. 26, 7871–7879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Taverna, S.D. et al. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol. Cell 24, 785–796 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kasten, M. et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 23, 1348–1359 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. White, C.L., Suto, R.K. & Luger, K. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J. 20, 5207–5218 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Shilatifard for editorial assistance and E. Smith for critical reading of the manuscript. We are grateful for M. Ruhlman and N. Dillon for large-scale preparation of polyacrylamide gels, and C. Wimberly and H. Strobietto for large-scale plasmid preparation and DNA sequencing. We are also grateful to B. Li from the Workman laboratory at the Stowers Institute for providing YBL574 and Y131 strains and shuffling plasmids. This work was supported by the US National Institute of Health grants 2R01CA89455 and 2R01GM069905 to A.S.

Author information

Authors and Affiliations

Authors

Contributions

S.N. and A.S. carried out the research and wrote the manuscript; B.W.S. and K.M.D. performed site-directed mutagenesis of histones and validation of the generated vectors; W.D.B. performed validation of the transformed yeast library; K.S.-H. and A.S. provided support and advice.

Corresponding author

Correspondence to Ali Shilatifard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, S., Sanderson, B., Delventhal, K. et al. A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat Struct Mol Biol 15, 881–888 (2008). https://doi.org/10.1038/nsmb.1454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1454

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing