Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice

Abstract

In vitro studies of pure tubulin have suggested that tubulin heterodimers in cells assemble into B-lattice microtubules, where the 8-nm dimers in adjacent protofilaments are staggered by 0.9 nm. This arrangement requires the tube to close by forming a seam with an A-lattice, in which the protofilaments are staggered by 4.9 nm. Here we show that Mal3, an EB1 family tip-tracking protein, drives tubulin to assemble in vitro into exclusively 13-protofilament microtubules with a high proportion of A-lattice protofilament contacts. We present a three-dimensional cryo-EM reconstruction of a purely A-lattice microtubule decorated with Mal3, in which Mal3 occupies the groove between protofilaments and associates closely with one tubulin monomer. We propose that Mal3 promotes assembly by binding to freshly formed tubulin polymer and particularly favors any with A-lattice arrangement. These results reopen the question of microtubule structure in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mal3 promotion of microtubule assembly in vitro.
Figure 2: Mal3 binding to microtubules in vitro.
Figure 3: Microtubules assembled with Mal3 show mixed lattices.
Figure 4: Three-dimensional reconstruction of Mal3-143–decorated A-lattice microtubule.
Figure 5: Model of Mal3 promotion of A-lattice assembly.

Similar content being viewed by others

References

  1. Desai, A. & Mitchison, T.J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  Google Scholar 

  2. Amos, L. & Klug, A. Arrangement of subunits in flagellar microtubules. J. Cell Sci. 14, 523–549 (1974).

    CAS  PubMed  Google Scholar 

  3. Song, Y.H. & Mandelkow, E. Recombinant kinesin motor domain binds to β-tubulin and decorates microtubules with a B surface lattice. Proc. Natl. Acad. Sci. USA 90, 1671–1675 (1993).

    Article  CAS  Google Scholar 

  4. Kikkawa, M., Ishikawa, T., Nakata, T., Wakabayashi, T. & Hirokawa, N. Direct visualization of the microtubule lattice seam both in vitro and in vivo. J. Cell Biol. 127, 1965–1971 (1994).

    Article  CAS  Google Scholar 

  5. Schuyler, S.C. & Pellman, D. Microtubule “plus-end-tracking proteins”: The end is just the beginning. Cell 105, 421–424 (2001).

    Article  CAS  Google Scholar 

  6. Mimori-Kiyosue, Y. & Tsukita, S. “Search-and-capture” of microtubules through plus-end-binding proteins (+TIPs). J. Biochem. 134, 321–326 (2003).

    Article  CAS  Google Scholar 

  7. Akhmanova, A. & Hoogenraad, C.C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54 (2005).

    Article  CAS  Google Scholar 

  8. Morrison, E.E. Action and interactions at microtubule ends. Cell. Mol. Life Sci. 64, 307–317 (2007).

    Article  CAS  Google Scholar 

  9. Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100–1105 (2007).

    Article  CAS  Google Scholar 

  10. Sandblad, L. et al. The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell 127, 1415–1424 (2006).

    Article  CAS  Google Scholar 

  11. Manna, T., Honnappa, S., Steinmetz, M.O. & Wilson, L. Suppression of microtubule dynamic instability by the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150glued. Biochemistry 47, 779–786 (2008).

    Article  CAS  Google Scholar 

  12. Honnappa, S., John, C.M., Kostrewa, D., Winkler, F.K. & Steinmetz, M.O. Structural insights into the EB1-APC interaction. EMBO J. 24, 261–269 (2005).

    Article  CAS  Google Scholar 

  13. Vitre, B. et al. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat. Cell Biol. 10, 415–421 (2008).

    Article  CAS  Google Scholar 

  14. Moores, C.A. et al. Mechanism of microtubule stabilization by doublecortin. Mol. Cell 14, 833–839 (2004).

    Article  CAS  Google Scholar 

  15. Richards, K.L. et al. Structure-function relationships in yeast tubulins. Mol. Biol. Cell 11, 1887–1903 (2000).

    Article  CAS  Google Scholar 

  16. Bhattacharyya, B., Sackett, D.L. & Wolff, J. Tubulin, hybrid dimers, and tubulin S. Stepwise charge reduction and polymerization. J. Biol. Chem. 260, 10208–10216 (1985).

    CAS  PubMed  Google Scholar 

  17. Sackett, D.L. & Wolff, J. Proteolysis of tubulin and the substructure of the tubulin dimer. J. Biol. Chem. 261, 9070–9076 (1986).

    CAS  PubMed  Google Scholar 

  18. Dias, D.P. & Milligan, R.A. Motor protein decoration of microtubules grown in high salt conditions reveals the presence of mixed lattices. J. Mol. Biol. 287, 287–292 (1999).

    Article  CAS  Google Scholar 

  19. Chretien, D., Fuller, S.D. & Karsenti, E. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell Biol. 129, 1311–1328 (1995).

    Article  CAS  Google Scholar 

  20. Wang, H.W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005).

    Article  CAS  Google Scholar 

  21. Mahadevan, L. & Mitchison, T.J. Cell biology: powerful curves. Nature 435, 895–897 (2005).

    Article  CAS  Google Scholar 

  22. Nogales, E., Wolf, S.G. & Downing, K.H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    Article  CAS  Google Scholar 

  23. Ravelli, R.B. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004).

    Article  CAS  Google Scholar 

  24. Gundersen, G.G. & Bulinski, J.C. Distribution of tyrosinated and nontyrosinated α-tubulin during mitosis. J. Cell Biol. 102, 1118–1126 (1986).

    Article  CAS  Google Scholar 

  25. Hammond, J.W., Cai, D. & Verhey, K.J. Tubulin modifications and their cellular functions. Curr. Opin. Cell Biol. 20, 71–76 (2008).

    Article  CAS  Google Scholar 

  26. Beinhauer, J.D., Hagan, I.M., Hegemann, J.H. & Fleig, U. Mal3, the fission yeast homologue of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form. J. Cell Biol. 139, 717–728 (1997).

    Article  CAS  Google Scholar 

  27. Moritz, M., Braunfeld, M.B., Guenebaut, V., Heuser, J. & Agard, D.A. Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat. Cell Biol. 2, 365–370 (2000).

    Article  CAS  Google Scholar 

  28. Kollman, J.M. et al. The structure of the γ-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. Mol. Biol. Cell 19, 207–215 (2008).

    Article  CAS  Google Scholar 

  29. Oakley, C.E. & Oakley, B.R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338, 662–664 (1989).

    Article  CAS  Google Scholar 

  30. Erdeniz, N., Mortensen, U.H. & Rothstein, R. Cloning-free PCR-based allele replacement methods. Genome Res. 7, 1174–1183 (1997).

    Article  CAS  Google Scholar 

  31. Davis, A., Sage, C.R., Wilson, L. & Farrell, K.W. Purification and biochemical characterization of tubulin from the budding yeast Saccharomyces cerevisiae. Biochemistry 32, 8823–8835 (1993).

    Article  CAS  Google Scholar 

  32. Walker, R.A. et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988).

    Article  CAS  Google Scholar 

  33. Browning, H. & Hackney, D.D. The EB1 homolog Mal3 stimulates the ATPase of the kinesin Tea2 by recruiting it to the microtubule. J. Biol. Chem. 280, 12299–12304 (2005).

    Article  CAS  Google Scholar 

  34. Krylyshkina, O. et al. Modulation of substrate adhesion dynamics via microtubule targeting requires kinesin-1. J. Cell Biol. 156, 349–359 (2002).

    Article  CAS  Google Scholar 

  35. Crowther, R.A., Henderson, R. & Smith, J.M. MRC image processing programs. J. Struct. Biol. 116, 9–16 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Löwe and the members of his group for their support and comments. This work was supported by the Medical Research Council, Marie Curie Cancer Care and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Contributions

A.d.G., M.K., D.R.D., R.A.C. and L.A.A. designed the experiments and wrote the manuscript; A.d.G. and M.K. performed the experiments; D.R.D. made strain mmsp174 and plasmid Mal-308; A.d.G. & L.A.A. performed the image analysis; M.O. prepared the S. pombe tubulin.

Corresponding author

Correspondence to Linda A Amos.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1843 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

des Georges, A., Katsuki, M., Drummond, D. et al. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nat Struct Mol Biol 15, 1102–1108 (2008). https://doi.org/10.1038/nsmb.1482

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1482

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing