Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution dynamic mapping of histone-DNA interactions in a nucleosome

Abstract

The nature of the nucleosomal barrier that regulates access to the underlying DNA during many cellular processes is not fully understood. Here we present a detailed map of histone-DNA interactions along the DNA sequence to near base pair accuracy by mechanically unzipping single molecules of DNA, each containing a single nucleosome. This interaction map revealed a distinct 5-bp periodicity that was enveloped by three broad regions of strong interactions, with the strongest occurring at the dyad and the other two about ±40-bp from the dyad. Unzipping up to the dyad allowed recovery of a canonical nucleosome upon relaxation of the DNA, but unzipping beyond the dyad resulted in removal of the histone octamer from its initial DNA sequence. These findings have important implications for how RNA polymerase and other DNA-based enzymes may gain access to DNA associated with a nucleosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleosome disruptions under a constant unzipping force.
Figure 2: Histone-DNA interaction map within a nucleosome core particle.
Figure 3: Nucleosome disruptions under a constant loading rate.
Figure 4: Mechanical unzipping (left) to mimic motor enzyme progression into a nucleosome (right).

Similar content being viewed by others

References

  1. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  2. Bondarenko, V.A. et al. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol. Cell 24, 469–479 (2006).

    Article  CAS  Google Scholar 

  3. Kireeva, M.L. et al. Nature of the nucleosomal barrier to RNA polymerase II. Mol. Cell 18, 97–108 (2005).

    Article  CAS  Google Scholar 

  4. Kireeva, M.L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

    Article  CAS  Google Scholar 

  5. Studitsky, V.M., Kassavetis, G.A., Geiduschek, E.P. & Felsenfeld, G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278, 1960–1963 (1997).

    Article  CAS  Google Scholar 

  6. Studitsky, V.M., Walter, W., Kireeva, M., Kashlev, M. & Felsenfeld, G. Chromatin remodeling by RNA polymerases. Trends Biochem. Sci. 29, 127–135 (2004).

    Article  CAS  Google Scholar 

  7. Walter, W., Kireeva, M.L., Studitsky, V.M. & Kashlev, M. Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes. J. Biol. Chem. 278, 36148–36156 (2003).

    Article  CAS  Google Scholar 

  8. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  Google Scholar 

  9. Cosgrove, M.S., Boeke, J.D. & Wolberger, C. Regulated nucleosome mobility and the histone code. Nat. Struct. Mol. Biol. 11, 1037–1043 (2004).

    Article  CAS  Google Scholar 

  10. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  11. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  Google Scholar 

  12. Bancaud, A. et al. Nucleosome chiral transition under positive torsional stress in single chromatin fibers. Mol. Cell 27, 135–147 (2007).

    Article  CAS  Google Scholar 

  13. Bennink, M.L. et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nat. Struct. Biol. 8, 606–610 (2001).

    Article  CAS  Google Scholar 

  14. Brower-Toland, B.D. et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).

    Article  CAS  Google Scholar 

  15. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).

    Article  CAS  Google Scholar 

  16. Shundrovsky, A., Smith, C.L., Lis, J.T., Peterson, C.L. & Wang, M.D. Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nat. Struct. Mol. Biol. 13, 549–554 (2006).

    Article  CAS  Google Scholar 

  17. Brower-Toland, B. et al. Specific contributions of histone tails and their acetylation to the mechanical stability of nucleosomes. J. Mol. Biol. 346, 135–146 (2005).

    Article  CAS  Google Scholar 

  18. Gemmen, G.J. et al. Forced unraveling of nucleosomes assembled on heterogeneous DNA using core histones, NAP-1, and ACF. J. Mol. Biol. 351, 89–99 (2005).

    Article  CAS  Google Scholar 

  19. Pope, L.H. et al. Single chromatin fiber stretching reveals physically distinct populations of disassembly events. Biophys. J. 88, 3572–3583 (2005).

    Article  CAS  Google Scholar 

  20. Luger, K. & Richmond, T.J. DNA binding within the nucleosome core. Curr. Opin. Struct. Biol. 8, 33–40 (1998).

    Article  CAS  Google Scholar 

  21. Mihardja, S., Spakowitz, A.J., Zhang, Y. & Bustamante, C. Effect of force on mononucleosomal dynamics. Proc. Natl. Acad. Sci. USA 103, 15871–15876 (2006).

    Article  CAS  Google Scholar 

  22. Kulic, I.M. & Schiessel, H. DNA spools under tension. Phys. Rev. Lett. 92, 228101 (2004).

    Article  CAS  Google Scholar 

  23. Sakaue, T. & Lowen, H. Unwrapping of DNA-protein complexes under external stretching. Phys. Rev. E 70, 021801 (2004).

    Article  Google Scholar 

  24. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  Google Scholar 

  25. Johnson, D.S., Bai, L., Smith, B.Y., Patel, S.S. & Wang, M.D. Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 129, 1299–1309 (2007).

    Article  CAS  Google Scholar 

  26. Thastrom, A., Bingham, L.M. & Widom, J. Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning. J. Mol. Biol. 338, 695–709 (2004).

    Article  CAS  Google Scholar 

  27. Muthurajan, U.M. et al. Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO J. 23, 260–271 (2004).

    Article  CAS  Google Scholar 

  28. Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53 (2005).

    Article  CAS  Google Scholar 

  29. Li, G. & Widom, J. Nucleosomes facilitate their own invasion. Nat. Struct. Mol. Biol. 11, 763–769 (2004).

    Article  CAS  Google Scholar 

  30. Wang, M.D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  CAS  Google Scholar 

  31. Galburt, E.A. et al. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446, 820–823 (2007).

    Article  CAS  Google Scholar 

  32. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  Google Scholar 

  33. Studitsky, V.M., Clark, D.J. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription. Cell 83, 19–27 (1995).

    Article  CAS  Google Scholar 

  34. Bednar, J., Studitsky, V.M., Grigoryev, S.A., Felsenfeld, G. & Woodcock, C.L. The nature of the nucleosomal barrier to transcription: direct observation of paused intermediates by electron cryomicroscopy. Mol. Cell 4, 377–386 (1999).

    Article  CAS  Google Scholar 

  35. Schafer, D.A., Gelles, J., Sheetz, M.P. & Landick, R. Transcription by single molecules of RNA polymerase observed by light microscopy. Nature 352, 444–448 (1991).

    Article  CAS  Google Scholar 

  36. Lee, K.M. & Narlikar, G. Assembly of nucleosomal templates by salt dialysis. Curr. Protoc. Mol. Biol. 21, 21 6 (2001).

    Google Scholar 

  37. Koch, S.J., Shundrovsky, A., Jantzen, B.C. & Wang, M.D. Probing protein-DNA interactions by unzipping a single DNA double helix. Biophys. J. 83, 1098–1105 (2002).

    Article  CAS  Google Scholar 

  38. Deufel, C. & Wang, M.D. Detection of forces and displacements along the axial direction in an optical trap. Biophys. J. 90, 657–667 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Wang laboratory and B. Brower-Toland for critical reading of the manuscript, J. Jin for helpful advice with biochemical preparations and D.S. Johnson for helpful discussions on instrumentation. We wish to acknowledge support from the US National Institutes of Health (GM059849 to M.D.W.; GM25232 to J.T.L.), the Keck Foundation (to M.D.W.), the Cornell Nanobiotechnology Center (to M.D.W. and J.T.L.) and the Molecular Biophysics Training Grant Traineeship (to M.A.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle D Wang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Discussion (PDF 390 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, M., Shundrovsky, A., Bai, L. et al. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat Struct Mol Biol 16, 124–129 (2009). https://doi.org/10.1038/nsmb.1526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing