Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome

Abstract

Protein synthesis is catalyzed in the peptidyl transferase center (PTC), located in the large (50S) subunit of the ribosome. No high-resolution structure of the intact ribosome has contained a complete active site including both A- and P-site tRNAs. In addition, although past structures of the 50S subunit have found no ordered proteins at the PTC, biochemical evidence suggests that specific proteins are capable of interacting with the 3′ ends of tRNA ligands. Here we present structures, at 3.6-Å and 3.5-Å resolution respectively, of the 70S ribosome in complex with A- and P-site tRNAs that mimic pre- and post-peptidyl-transfer states. These structures demonstrate that the PTC is very similar between the 50S subunit and the intact ribosome. They also reveal interactions between the ribosomal proteins L16 and L27 and the tRNA substrates, helping to elucidate the role of these proteins in peptidyl transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribosomal substrates in the peptidyl transferase center.
Figure 2: Interactions of the ribosomal substrates with the 23S RNA in the peptidyl transferase center.
Figure 3: Interactions of the ribosomal proteins L27 and L16 with the ribosomal substrates.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  2. Steitz, T.A. Structural insights into the functions of the large ribosomal subunit, a major antibiotic target. Keio J. Med. 57, 1–14 (2008).

    Article  Google Scholar 

  3. Rodnina, M.V., Beringer, M. & Wintermeyer, W. Mechanism of peptide bond formation on the ribosome. Q. Rev. Biophys. 39, 203–225 (2006).

    Article  CAS  Google Scholar 

  4. Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H.F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077 (2006).

    Article  CAS  Google Scholar 

  5. Bashan, A. et al. Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol. Cell 11, 91–102 (2003).

    Article  CAS  Google Scholar 

  6. Wower, I.K., Wower, J. & Zimmermann, R.A. Ribosomal protein L27 participates in both 50 S subunit assembly and the peptidyl transferase reaction. J. Biol. Chem. 273, 19847–19852 (1998).

    Article  CAS  Google Scholar 

  7. Wower, J., Hixson, S.S. & Zimmermann, R.A. Labeling the peptidyl transferase center of the Escherichia coli ribosome with photoreactive tRNAPhe derivatives containing azidoadenosine at the 3′ end of the acceptor arm: a model of the tRNA-ribosome complex. Proc. Natl. Acad. Sci. USA 86, 5232–5236 (1989).

    Article  CAS  Google Scholar 

  8. Maguire, B.A., Beniaminov, A.D., Ramu, H., Mankin, A.S. & Zimmermann, R.A. A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome. Mol. Cell 20, 427–435 (2005).

    Article  CAS  Google Scholar 

  9. Moore, V.G., Atchison, R.E., Thomas, G., Moran, M. & Noller, H.F. Identification of a ribosomal protein essential for peptidyl transferase activity. Proc. Natl. Acad. Sci. USA 72, 844–848 (1975).

    Article  CAS  Google Scholar 

  10. Kazemie, M. Binding of aminoacyl-tRNA to reconstituted subparticles of Escherichia coli large ribosomal subunits. Eur. J. Biochem. 67, 373–378 (1976).

    Article  CAS  Google Scholar 

  11. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  12. Kim, D.F. & Green, R. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4, 859–864 (1999).

    Article  CAS  Google Scholar 

  13. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).

    Article  CAS  Google Scholar 

  14. Schmeing, T.M., Huang, K.S., Strobel, S.A. & Steitz, T.A. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438, 520–524 (2005).

    Article  CAS  Google Scholar 

  15. Weinger, J.S., Parnell, K.M., Dorner, S., Green, R. & Strobel, S.A. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat. Struct. Mol. Biol. 11, 1101–1106 (2004).

    Article  CAS  Google Scholar 

  16. Dorner, S., Panuschka, C., Schmid, W. & Barta, A. Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2′-OH to activity. Nucleic Acids Res. 31, 6536–6542 (2003).

    Article  CAS  Google Scholar 

  17. Wohlgemuth, I., Beringer, M. & Rodnina, M.V. Rapid peptide bond formation on isolated 50S ribosomal subunits. EMBO Rep. 7, 699–703 (2006).

    Article  CAS  Google Scholar 

  18. Fahlman, R.P. & Uhlenbeck, O.C. Contribution of the esterified amino acid to the binding of aminoacylated tRNAs to the ribosomal P- and A-sites. Biochemistry 43, 7575–7583 (2004).

    Article  CAS  Google Scholar 

  19. Fahlman, R.P., Dale, T. & Uhlenbeck, O.C. Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. Mol. Cell 16, 799–805 (2004).

    Article  CAS  Google Scholar 

  20. Semenkov, Y.P., Rodnina, M.V. & Wintermeyer, W. Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome. Nat. Struct. Biol. 7, 1027–1031 (2000).

    Article  CAS  Google Scholar 

  21. Lill, R., Robertson, J.M. & Wintermeyer, W. Affinities of tRNA binding sites of ribosomes from Escherichia coli. Biochemistry 25, 3245–3255 (1986).

    Article  CAS  Google Scholar 

  22. Schilling-Bartetzko, S., Franceschi, F., Sternbach, H. & Nierhaus, K.H. Apparent association constants of tRNAs for the ribosomal A, P, and E sites. J. Biol. Chem. 267, 4693–4702 (1992).

    CAS  PubMed  Google Scholar 

  23. Zavialov, A.V., Mora, L., Buckingham, R.H. & Ehrenberg, M. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol. Cell 10, 789–798 (2002).

    Article  CAS  Google Scholar 

  24. Caskey, C.T., Beaudet, A.L., Scolnick, E.M. & Rosman, M. Hydrolysis of fMet-tRNA by peptidyl transferase. Proc. Natl. Acad. Sci. USA 68, 3163–3167 (1971).

    Article  CAS  Google Scholar 

  25. Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature 454, 852–857 (2008).

    Article  CAS  Google Scholar 

  26. Weixlbaumer, A. et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953–956 (2008).

    Article  CAS  Google Scholar 

  27. Nierhaus, K.H. The allosteric three-site model for the ribosomal elongation cycle: features and future. Biochemistry 29, 4997–5008 (1990).

    Article  CAS  Google Scholar 

  28. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.S. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  29. Maguire, B.A., Manuilov, A.V. & Zimmermann, R.A. Differential effects of replacing Escherichia coli ribosomal protein L27 with its homologue from Aquifex aeolicus. J. Bacteriol. 183, 6565–6572 (2001).

    Article  CAS  Google Scholar 

  30. Chen, R., Mende, L. & Arfsten, U. The primary structure of protein L27 from the peptidyl-tRNA binding side of Escherichia coli ribosomes. FEBS Lett. 59, 96–99 (1975).

    Article  CAS  Google Scholar 

  31. Odintsova, T.I. et al. Characterization and analysis of posttranslational modifications of the human large cytoplasmic ribosomal subunit proteins by mass spectrometry and Edman sequencing. J. Protein Chem. 22, 249–258 (2003).

    Article  CAS  Google Scholar 

  32. Strader, M.B. et al. Characterization of the 70S ribosome from Rhodopseudomonas palustris using an integrated “top-down” and “bottom-up” mass spectrometric approach. J. Proteome Res. 3, 965–978 (2004).

    Article  CAS  Google Scholar 

  33. Suh, M.J., Hamburg, D.M., Gregory, S.T., Dahlberg, A.E. & Limbach, P.A. Extending ribosomal protein identifications to unsequenced bacterial strains using matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 5, 4818–4831 (2005).

    Article  CAS  Google Scholar 

  34. Trobro, S. & Aqvist, J. Role of ribosomal protein L27 in peptidyl transfer. Biochemistry 47, 4898–4906 (2008).

    Article  CAS  Google Scholar 

  35. Hampl, H., Schulze, H. & Nierhause, K.H. Ribosomal components from Escherichia coli 50S subunits involved in the reconstitution of peptidyl transferase activity. J. Biol. Chem. 258, 12810–12815 (1981).

    Google Scholar 

  36. Noller, H.F. et al. Structure of the ribosome at 5.5 A resolution and its interactions with functional ligands. Cold Spring Harb. Symp. Quant. Biol. 66, 57–66 (2001).

    Article  CAS  Google Scholar 

  37. Nishimura, M. et al. Solution structure of ribosomal protein L16 from Thermus thermophilus HB8. J. Mol. Biol. 344, 1369–1383 (2004).

    Article  CAS  Google Scholar 

  38. Belova, L., Tenson, T., Xiong, L., McNicholas, P.M. & Mankin, A.S. A novel site of antibiotic action in the ribosome: interaction of evernimicin with the large ribosomal subunit. Proc. Natl. Acad. Sci. USA 98, 3726–3731 (2001).

    Article  CAS  Google Scholar 

  39. Fraser, T.H. & Rich, A. Synthesis and aminoacylation of 3′-amino-3′-deoxy transfer RNA and its activity in ribosomal protein synthesis. Proc. Natl. Acad. Sci. USA 70, 2671–2675 (1973).

    Article  CAS  Google Scholar 

  40. Robins, M.J., Miles, R.W., Samano, M.C. & Kaspar, R.L. Syntheses of puromycin from adenosine and 7-deazapuromycin from tubercidin, and biological comparisons of the 7-aza/deaza pair. J. Org. Chem. 66, 8204–8210 (2001).

    Article  CAS  Google Scholar 

  41. Ludwig, J. A new route to nucleoside 5′-triphosphates. Acta Biochim. Biophys. Acad. Sci. Hung. 16, 131–133 (1981).

    CAS  PubMed  Google Scholar 

  42. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  43. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Cryst. D. Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  44. Schmeing, T.M., Huang, K.S., Kitchen, D.E., Strobel, S.A. & Steitz, T.A. Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol. Cell 20, 437–448 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Schmeing for guidance with refinement and interpretation of the data, E. Stephens for mass spectrometry work, J.C. Cochrane for critical review of the manuscript, and M. Fuchs and C. Schulze-Briese for their advice and help with data collection at the Swiss Light Source. This work was supported by the Medical Research Council UK, the Wellcome Trust, the Agouron Institute and the Louis-Jeantet Foundation. R.M.V. is the recipient of a Gates-Cambridge scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Ramakrishnan.

Ethics declarations

Competing interests

V.R. is on the Scientific Advisory Board of Rib-X Pharmaceuticals, a company involved in developing new antibiotics that target the ribosome.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 3253 kb)

Supplementary Video 1

Accommodation of the A-site tRNA. This movie models the conformational changes that occur within the 23S RNA upon A-site tRNA binding. The movie was made using coordinates from Selmer et al.1, which did not contain an A-site substrate within the PTC, and the pre-peptidyl transfer structure reported here, containing an ordered A-site tRNA within the PTC. 23S RNA is represented in cyan, A- and P-site tRNAs are modeled in green and red, respectively, and the A- and P-site amino acids are shown in yellow. (MOV 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voorhees, R., Weixlbaumer, A., Loakes, D. et al. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Mol Biol 16, 528–533 (2009). https://doi.org/10.1038/nsmb.1577

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing