Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity

Abstract

DNA deaminases underpin pathways in antibody diversification (AID) and anti-viral immunity (APOBEC3s). Here we show how a high-throughput bacterial papillation assay can be used to screen for AID mutants with increased catalytic activity. The upmutations focus on a small number of residues, some highlighting regions implicated in AID's substrate interaction. Many of the upmutations bring the sequence of AID closer to that of APOBEC3s. AID upmutants can yield increased antibody diversification, raising the possibility that modification of AID's specific activity might be used to regulate antibody diversification in vivo. However, upmutation of AID also led to an increased frequency of chromosomal translocations, suggesting that AID's specific activity may have been limited by the risk of genomic instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Papillation screen for active mutators.
Figure 2: Dynasty of AID upmutants selected by papillation screen.
Figure 3: Nature of the AID upmutations.
Figure 4: Upmutants of fugu AID.
Figure 5: Enhanced antibody diversification by AID upmutants.
Figure 6: Increased chromosomal translocations by AID upmutants.
Figure 7: Comparison of AID with APOBEC3s.

Similar content being viewed by others

References

  1. Alt, F.W. & Honjo, T. (eds.). AID for Immunoglobulin Diversity. Advances in Immunology Vol. 94 (Elsevier, Amsterdam;, 2007).

    Google Scholar 

  2. Di Noia, J.M. & Neuberger, M.S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    Article  CAS  Google Scholar 

  3. Chiu, Y.L. & Greene, W.C. The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu. Rev. Immunol. 26, 317–353 (2008).

    Article  CAS  Google Scholar 

  4. Haché, G., Mansky, L.M. & Harris, R.S. Human APOBEC3 proteins, retrovirus restriction, and HIV drug resistance. AIDS Rev. 8, 148–157 (2006).

    PubMed  Google Scholar 

  5. de Yébenes, V.G. & Ramiro, A.R. Activation-induced deaminase: light and dark sides. Trends Mol. Med. 12, 432–439 (2006).

    Article  Google Scholar 

  6. Okazaki, I.M. et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med. 197, 1173–1181 (2003).

    Article  CAS  Google Scholar 

  7. Ramiro, A.R. et al. Role of genomic instability and p53 in AID-induced c-myc–Igh translocations. Nature 440, 105–109 (2006).

    Article  CAS  Google Scholar 

  8. Robbiani, D.F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).

    Article  CAS  Google Scholar 

  9. Nghiem, Y., Cabrera, M., Cupples, C.G. & Miller, J.H. The mutY gene: a locus in Escherichia coli that generates G·C → T·A transversions. Proc. Natl. Acad. Sci. USA 85, 2709–2713 (1988).

    Article  CAS  Google Scholar 

  10. Ruiz, S.M., Létourneau, S. & Cupples, C.G. Isolation and characterization of an Escherichia coli strain with a high frequency of C-to-T mutations at 5-methylcytosines. J. Bacteriol. 175, 4985–4989 (1993).

    Article  CAS  Google Scholar 

  11. Cupples, C.G. & Miller, J.H. A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc. Natl. Acad. Sci. USA 86, 5345–5349 (1989).

    Article  CAS  Google Scholar 

  12. Conticello, S.G., Langlois, M.A. & Neuberger, M.S. Insights into DNA deaminases. Nat. Struct. Mol. Biol. 14, 7–9 (2007).

    Article  CAS  Google Scholar 

  13. Chen, K.M. et al. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 452, 116–119 (2008).

    Article  CAS  Google Scholar 

  14. Holden, L.G. et al. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 456, 121–124 (2008).

    Article  CAS  Google Scholar 

  15. Larijani, M. et al. AID associates with single-stranded DNA with high affinity and a long complex half-life in a sequence-independent manner. Mol. Cell. Biol. 27, 20–30 (2007).

    Article  CAS  Google Scholar 

  16. Conticello, S.G., Thomas, C.J., Petersen-Mahrt, S.K. & Neuberger, M.S. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol. Biol. Evol. 22, 367–377 (2005).

    Article  CAS  Google Scholar 

  17. Barreto, V., Reina-San-Martin, B., Ramiro, A.R., McBride, K.M. & Nussenzweig, M.C. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol. Cell 12, 501–508 (2003).

    Article  CAS  Google Scholar 

  18. Ta, V.T. et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat. Immunol. 4, 843–848 (2003).

    Article  CAS  Google Scholar 

  19. de Yébenes, V.G. et al. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205, 2199–2206 (2008).

    Article  Google Scholar 

  20. Dorsett, Y. et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28, 630–638 (2008).

    Article  CAS  Google Scholar 

  21. McBride, K.M. et al. Regulation of class switch recombination and somatic mutation by AID phosphorylation. J. Exp. Med. 205, 2585–2594 (2008).

    Article  CAS  Google Scholar 

  22. Pauklin, S., Sernandez, I.V., Bachmann, G., Ramiro, A.R. & Petersen-Mahrt, S.K. Estrogen directly activates AID transcription and function. J. Exp. Med. 206, 99–111 (2009).

    Article  CAS  Google Scholar 

  23. Sernández, I.V., de Yébenes, V.G., Dorsett, Y. & Ramiro, A.R. Haploinsufficiency of activation-induced deaminase for antibody diversification and chromosome translocations both in vitro and in vivo. PLoS One 3, e3927 (2008).

    Article  Google Scholar 

  24. Takizawa, M. et al. AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development. J. Exp. Med. 205, 1949–1957 (2008).

    Article  CAS  Google Scholar 

  25. Teng, G. et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28, 621–629 (2008).

    Article  CAS  Google Scholar 

  26. Arakawa, H., Saribasak, H. & Buerstedde, J.M. Activation-induced cytidine deaminase initiates immunoglobulin gene conversion and hypermutation by a common intermediate. PLoS Biol. 2, e179 (2004).

    Article  Google Scholar 

  27. Conticello, S.G. et al. Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1. Mol. Cell 31, 474–484 (2008).

    Article  CAS  Google Scholar 

  28. Janz, S., Müller, J., Shaughnessy, J. & Potter, M. Detection of recombinations between c-myc and immunoglobulin switch alpha in murine plasma cell tumors and preneoplastic lesions by polymerase chain reaction. Proc. Natl. Acad. Sci. USA 90, 7361–7365 (1993).

    Article  CAS  Google Scholar 

  29. LaRue, R.S. et al. Guidelines for naming nonprimate APOBEC3 genes and proteins. J. Virol. 83, 494–497 (2009).

    Article  CAS  Google Scholar 

  30. LaRue, R.S. et al. The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. BMC Mol. Biol. 9, 104 (2008).

    Article  Google Scholar 

  31. Chaudhuri, J., Khuong, C. & Alt, F.W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–998 (2004).

    Article  CAS  Google Scholar 

  32. Basu, U. et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 438, 508–511 (2005).

    Article  CAS  Google Scholar 

  33. Clarke, S.H. et al. Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin. J. Exp. Med. 161, 687–704 (1985).

    Article  CAS  Google Scholar 

  34. Berek, C. & Milstein, C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol. Rev. 96, 23–41 (1987).

    Article  CAS  Google Scholar 

  35. Celada, F. & Seiden, P.E. Affinity maturation and hypermutation in a simulation of the humoral immune response. Eur. J. Immunol. 26, 1350–1358 (1996).

    Article  CAS  Google Scholar 

  36. Kepler, T.B. & Perelson, A.S. Somatic hypermutation in B cells: an optimal control treatment. J. Theor. Biol. 164, 37–64 (1993).

    Article  CAS  Google Scholar 

  37. Kepler, T.B. & Perelson, A.S. Modeling and optimization of populations subject to time-dependent mutation. Proc. Natl. Acad. Sci. USA 92, 8219–8223 (1995).

    Article  CAS  Google Scholar 

  38. Kleinstein, S.H., Louzoun, Y. & Shlomchik, M.J. Estimating hypermutation rates from clonal tree data. J. Immunol. 171, 4639–4649 (2003).

    Article  CAS  Google Scholar 

  39. Arakawa, H. et al. Protein evolution by hypermutation and selection in the B cell line DT40. Nucleic Acids Res. 36, e1 (2008).

    Article  Google Scholar 

  40. Cumbers, S.J. et al. Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nat. Biotechnol. 20, 1129–1134 (2002).

    Article  CAS  Google Scholar 

  41. Wang, L., Jackson, W.C., Steinbach, P.A. & Tsien, R.Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. USA 101, 16745–16749 (2004).

    Article  CAS  Google Scholar 

  42. Bransteitter, R., Pham, P., Calabrese, P. & Goodman, M.F. Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. J. Biol. Chem. 279, 51612–51621 (2004).

    Article  CAS  Google Scholar 

  43. Bennett, R.P. et al. APOBEC-1 and AID are nucleo-cytoplasmic trafficking proteins but APOBEC3G cannot traffic. Biochem. Biophys. Res. Commun. 350, 214–219 (2006).

    Article  CAS  Google Scholar 

  44. Bennett, R.P., Presnyak, V., Wedekind, J.E. & Smith, H.C. Nuclear exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding. J. Biol. Chem. 283, 7320–7327 (2008).

    Article  CAS  Google Scholar 

  45. Stenglein, M.D., Matsuo, H. & Harris, R.S. Two regions within the amino-terminal half of APOBEC3G cooperate to determine cytoplasmic localization. J. Virol. 82, 9591–9599 (2008).

    Article  CAS  Google Scholar 

  46. Chen, H. et al. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr. Biol. 16, 480–485 (2006).

    Article  CAS  Google Scholar 

  47. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–104 (2002).

    Article  CAS  Google Scholar 

  48. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  Google Scholar 

  49. Di Noia, J.M. et al. Dependence of antibody gene diversification on uracil excision. J. Exp. Med. 204, 3209–3219 (2007).

    Article  CAS  Google Scholar 

  50. Sale, J.E., Calandrini, D.M., Takata, M., Takeda, S. & Neuberger, M.S. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature 412, 921–926 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to J. Miller (Molecular Biology Institute and Department of Biology, University of California, Los Angeles) for kindly providing E. coli strain CC102 and recommendations regarding plating, to J.-M. Buerstedde (Munich) for providing the DT40 cell lines, to O. Perisic (Cambridge) for providing the pOPTG vector, to Silvestro G. Conticello (Istituto Toscano Tumori) for helpful suggestions and the James Baird and Frank Elmore funds for support to M.W.

Author information

Authors and Affiliations

Authors

Contributions

M.W. and Z.Y. performed the papillation assay and selection of human AID upmutants; M.W. performed all other experiments; C.R. designed and assisted with the class-switching assay and translocation assay; M.S.N. designed the overall research and wrote the manuscript.

Corresponding author

Correspondence to Michael S Neuberger.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 1768 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Yang, Z., Rada, C. et al. AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol 16, 769–776 (2009). https://doi.org/10.1038/nsmb.1623

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1623

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing