Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural determinants of miRNAs for RISC loading and slicer-independent unwinding

Abstract

MicroRNAs (miRNAs) regulate expression of their target mRNAs through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) family protein as a core component. In Drosophila melanogaster, miRNAs are generally sorted into Ago1-containing RISC (Ago1-RISC). We established a native gel system that can biochemically dissect the Ago1-RISC assembly pathway. We found that miRNA-miRNA* duplexes are loaded into Ago1 as double-stranded RNAs in an ATP-dependent fashion. In contrast, unexpectedly, unwinding of miRNA-miRNA* duplexes is a passive process that does not require ATP or slicer activity of Ago1. Central mismatches direct miRNA-miRNA* duplexes into pre-Ago1-RISC, whereas mismatches in the seed or guide strand positions 12–15 promote conversion of pre-Ago1-RISC into mature Ago1-RISC. Our findings show that unwinding of miRNAs is a precise mirror-image process of target recognition, and both processes reflect the unique geometry of RNAs in Ago proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of small RNA–protein complexes in dcr-2 embryo lysate.
Figure 2: Complex I is pre-Ago1-RISC, and complex II is mature Ago1-RISC.
Figure 3: ATP is essential for Ago1-RISC loading but dispensable for unwinding.
Figure 4: Central mismatches direct small RNA duplexes into pre-Ago1-RISC, whereas seed or 3′-mid mismatches promote conversion of pre-Ago1-RISC to mature Ago1-RISC.
Figure 5: Strand separation of small RNA duplex does not require the slicer activity of Ago1.
Figure 6: Structural determinants for Ago1-RISC loading and strand separation.

Similar content being viewed by others

References

  1. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Tomari, Y. & Zamore, P.D. Perspective: machines for RNAi. Genes Dev. 19, 517–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Filipowicz, W. RNAi: the nuts and bolts of the RISC machine. Cell 122, 17–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M.C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Förstemann, K., Horwich, M.D., Wee, L., Tomari, Y. & Zamore, P.D. Drosophila microRNAs are sorted into functionally distinct Argonaute complexes after production by Dicer-1. Cell 130, 287–297 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tomari, Y., Du, T. & Zamore, P.D. Sorting of Drosophila small silencing RNAs. Cell 130, 299–308 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute2 in somatic cells. Nature 453, 793–797 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320, 1077–1081 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azuma-Mukai, A. et al. Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc. Natl. Acad. Sci. USA 105, 7964–7969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Su, H., Trombly, M.I., Chen, J. & Wang, X. Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev. 23, 304–317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116, 831–841 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Pham, J.W., Pellino, J.L., Lee, Y.S., Carthew, R.W. & Sontheimer, E.J.A. Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Förstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Saito, K., Ishizuka, A., Siomi, H. & Siomi, M.C. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol. 3, e235 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu, X. et al. Dicer-1, but not Loquacious, is critical for assembly of miRNA-induced silencing complexes. RNA 13, 2324–2329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin, Z. & Xie, T. Dcr-1 maintains Drosophila ovarian stem cells. Curr. Biol. 17, 539–544 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Nykänen, A., Haley, B. & Zamore, P.D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).

    Article  PubMed  Google Scholar 

  21. Rand, T.A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M.C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leuschner, P.J., Ameres, S.L., Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 7, 314–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, Y.S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Chan, S.P., Ramaswamy, G., Choi, E.Y. & Slack, F.J. Identification of specific let-7 microRNA binding complexes in Caenorhabditis elegans. RNA 14, 2104–2114 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iwasaki, S., Kawamata, T. & Tomari, Y. Drosophila Argonaute1 and Argonaute2 employ distinct mechanisms for translational repression. Mol. Cell 34, 58–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 15, 346–353 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Grimson, A. et al. microRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Doench, J.G., Petersen, C.P. & Sharp, P.A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Song, J.J., Smith, S.K., Hannon, G.J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Rivas, F.V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 12, 340–349 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Ruby, J.G. et al. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 17, 1850–1864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seitz, H., Ghildiyal, M. & Zamore, P.D. Argonaute loading improves the 5′ precision of both microRNAs and their miRNA* strands in flies. Curr. Biol. 18, 147–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu, J. et al. The birth and death of microRNA genes in Drosophila. Nat. Genet. 40, 351–355 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Chung, W.J., Okamura, K., Martin, R. & Lai, E.C. Endogenous RNA Interference provides a somatic defense against Drosophila transposons. Curr. Biol. 18, 795–802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruby, J.G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Batista, P.J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67–78 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Calabrese, J.M., Seila, A.C., Yeo, G.W. & Sharp, P.A. RNA sequence analysis defines Dicer's role in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 104, 18097–18102 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tam, O.H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Babiarz, J.E., Ruby, J.G., Wang, Y., Bartel, D.P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 22, 2773–2785 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ishizuka, A., Siomi, M.C. & Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16, 2497–2508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Robb, G.B. & Rana, T.M. RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol. Cell 26, 523–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Meister, G. et al. Identification of novel Argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Höck, J. et al. Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep. 8, 1052–1060 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Landthaler, M. et al. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14, 2580–2596 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou, R. et al. Comparative analysis of Argonaute-dependent small RNA pathways in Drosophila. Mol. Cell 32, 592–599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D.J. Structure of the guide-strand-containing Argonaute silencing complex. Nature 456, 209–213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Y. et al. Structure of an Argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Elbashir, S.M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Haley, B. & Zamore, P.D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Doench, J.G. & Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mallory, A.C. et al. microRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23, 3356–3364 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haley, B., Tang, G. & Zamore, P.D. In vitro analysis of RNA interference in Drosophila melanogaster. Methods 30, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Siomi and H. Siomi (Keio University) for the antibody to Ago1, E. Izaurralde (Max Planck Institute) for the antibody to GW182, R. Carthew (Northwestern University) for the dcr-2L811fsX flies, and M. Horwich and P. Zamore (University of Massachusetts) for the pENTR-Ago1 construct. We also thank M. Mitomi and A. Maruyama for technical assistance, S. Iwasaki and members of the Tomari laboratory for constant and helpful discussions, and H. Sasaki and P. Zamore for stimulating discussions. This work was supported in part by a Grant-in-Aid for Young Scientists (A) from the Japan Ministry of Education, Culture, Sports, Science and Technology, and a Carrier Development Award from The International Human Frontier Science Program Organization. Y.T. is a Japan Science and Technology Agency PRESTO researcher.

Author information

Authors and Affiliations

Authors

Contributions

T.K. and Y.T. conducted biochemical experiments, H.S. conducted bioinformatic analyses, Y.T. supervised the study, and all authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Yukihide Tomari.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 2300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamata, T., Seitz, H. & Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol 16, 953–960 (2009). https://doi.org/10.1038/nsmb.1630

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1630

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing