Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for autoregulation of the zinc transporter YiiP

Abstract

Zinc transporters have crucial roles in cellular zinc homeostatic control. The 2.9-Å resolution structure of the zinc transporter YiiP from Escherichia coli reveals a richly charged dimer interface stabilized by zinc binding. Site-directed fluorescence resonance energy transfer (FRET) measurements and mutation-activity analysis suggest that zinc binding triggers hinge movements of two electrically repulsive cytoplasmic domains pivoting around four salt bridges situated at the juncture of the cytoplasmic and transmembrane domains. These highly conserved salt bridges interlock transmembrane helices at the dimer interface, where they are well positioned to transmit zinc-induced interdomain movements to reorient transmembrane helices, thereby modulating coordination geometry of the active site for zinc transport. The cytoplasmic domain of YiiP is a structural mimic of metal-trafficking proteins and the metal-binding domains of metal-transporting P-type ATPases. The use of this common structural module to regulate metal coordination chemistry may enable a tunable transport activity in response to cytoplasmic metal fluctuations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: YiiP structure and helix packing in the TMD.
Figure 2: Zinc-binding sites.
Figure 3: Electrostatic surface potentials and a model for autoregulation.
Figure 4: Functional characterization.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Vallee, B.L. & Falchuk, K.H. The biochemical basis of zinc physiology. Physiol. Rev. 73, 79–118 (1993).

    Article  CAS  Google Scholar 

  2. Berg, J. & Shi, Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science 271, 1081–1085 (1996).

    Article  CAS  Google Scholar 

  3. Koh, J.Y. et al. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272, 1013–1016 (1996).

    Article  CAS  Google Scholar 

  4. Outten, C. & O'Halloran, T. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492 (2001).

    Article  CAS  Google Scholar 

  5. Zhao, H. & Eide, D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc. Natl. Acad. Sci. USA 93, 2454–2458 (1996).

    Article  CAS  Google Scholar 

  6. Grotz, N. et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. USA 95, 7220–7224 (1998).

    Article  CAS  Google Scholar 

  7. Palmiter, R. & Findley, S. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 14, 639–649 (1995).

    Article  CAS  Google Scholar 

  8. Nies, D.H. & Silver, S. Ion efflux systems involved in bacterial metal resistances. J. Ind. Microbiol. 14, 186–199 (1995).

    Article  CAS  Google Scholar 

  9. Chao, Y. & Fu, D. Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J. Biol. Chem. 279, 12043–12050 (2004).

    Article  CAS  Google Scholar 

  10. Ohana, E. et al. Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J. Biol. Chem. 284, 17677–17686 (2009).

    Article  CAS  Google Scholar 

  11. Cousins, R.J., Liuzzi, J.P. & Lichten, L.A. Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 281, 24085–24089 (2006).

    Article  CAS  Google Scholar 

  12. Nies, D.H. How cells control zinc homeostasis. Science 317, 1695–1696 (2007).

    Article  CAS  Google Scholar 

  13. Lu, M. & Fu, D. Structure of the zinc transporter YiiP. Science 317, 1746–1748 (2007).

    Article  CAS  Google Scholar 

  14. Wei, Y. & Fu, D. Selective metal binding to a membrane-embedded aspartate in the Escherichia coli metal transporter YiiP (FieF). J. Biol. Chem. 280, 33716–33724 (2005).

    Article  CAS  Google Scholar 

  15. Paulsen, I. & Saier, M.J. A novel family of ubiquitous heavy metal ion transport proteins. J. Membr. Biol. 156, 99–103 (1997).

    Article  CAS  Google Scholar 

  16. O'Halloran, T.V. & Culotta, V.C. Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 25057–25060 (2000).

    Article  CAS  Google Scholar 

  17. Arnesano, F. et al. Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genome Res. 12, 255–271 (2002).

    Article  CAS  Google Scholar 

  18. Rosenzweig, A.C. & O'Halloran, T.V. Structure and chemistry of the copper chaperone proteins. Curr. Opin. Chem. Biol. 4, 140–147 (2000).

    Article  CAS  Google Scholar 

  19. González-Guerrero, M. & Arguello, J.M. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc. Natl. Acad. Sci. USA 105, 5992–5997 (2008).

    Article  Google Scholar 

  20. Hsi, G. & Cox, D.W. A comparison of the mutation spectra of Menkes disease and Wilson disease. Hum. Genet. 114, 165–172 (2004).

    Article  CAS  Google Scholar 

  21. Chimienti, F. et al. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J. Cell Sci. 119, 4199–4206 (2006).

    Article  CAS  Google Scholar 

  22. Scott, L.J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    Article  CAS  Google Scholar 

  23. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Article  CAS  Google Scholar 

  24. Wenzlau, J.M. et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc. Natl. Acad. Sci. USA 104, 17040–17045 (2007).

    Article  CAS  Google Scholar 

  25. Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    Article  CAS  Google Scholar 

  26. Finney, L.A. & O'Halloran, T.V. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300, 931–936 (2003).

    Article  CAS  Google Scholar 

  27. Laskowski, R., MacArthur, M., Moss, D. & Thornton, J. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  28. Wei, Y., Li, H. & Fu, D. Oligomeric state of the Escherichia coli metal transporter YiiP. J. Biol. Chem. 279, 39251–39259 (2004).

    Article  CAS  Google Scholar 

  29. Grass, G. et al. FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch. Microbiol. 183, 9–18 (2005).

    Article  CAS  Google Scholar 

  30. Frausto da Silva, J. & Williams, R. The Biological Chemistry of the Elements—The Inorganic Chemistry of Life 315–333 (Oxford University, Oxford, 2001).

    Google Scholar 

  31. von Heijne, G. Membrane-protein topology. Nat. Rev. Mol. Cell Biol. 7, 909–918 (2006).

    Article  CAS  Google Scholar 

  32. Cherezov, V. et al. Insights into the mode of action of a putative zinc transporter CzrB in Thermus thermophilus. Structure 16, 1378–1388 (2008).

    Article  CAS  Google Scholar 

  33. Majumdar, D.S. et al. Single-molecule FRET reveals sugar-induced conformational dynamics in LacY. Proc. Natl. Acad. Sci. USA 104, 12640–12645 (2007).

    Article  CAS  Google Scholar 

  34. de Bie, P., Muller, P., Wijmenga, C. & Klomp, L.W. Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J. Med. Genet. 44, 673–688 (2007).

    Article  CAS  Google Scholar 

  35. Murphy, D.L. & Lesch, K.P. Targeting the murine serotonin transporter: insights into human neurobiology. Nat. Rev. Neurosci. 9, 85–96 (2008).

    Article  CAS  Google Scholar 

  36. Sine, S.M. & Engel, A.G. Recent advances in Cys-loop receptor structure and function. Nature 440, 448–455 (2006).

    Article  CAS  Google Scholar 

  37. Besserer, G.M. et al. The second Ca2+-binding domain of the Na+ Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis. Proc. Natl. Acad. Sci. USA 104, 18467–18472 (2007).

    Article  CAS  Google Scholar 

  38. Eshaghi, S. et al. Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Science 313, 354–357 (2006).

    Article  CAS  Google Scholar 

  39. Hattori, M., Tanaka, Y., Fukai, S., Ishitani, R. & Nureki, O. Crystal structure of the MgtE Mg2+ transporter. Nature 448, 1072–1075 (2007).

    Article  CAS  Google Scholar 

  40. Lunin, V.V. et al. Crystal structure of the CorA Mg2+ transporter. Nature 440, 833–837 (2006).

    Article  CAS  Google Scholar 

  41. Payandeh, J. & Pai, E.F. A structural basis for Mg2+ homeostasis and the CorA translocation cycle. EMBO J. 25, 3762–3773 (2006).

    Article  CAS  Google Scholar 

  42. Chao, Y. & Fu, D. Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J. Biol. Chem. 279, 17173–17180 (2004).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  44. Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr. 57, 1373–1382 (2001).

    Article  CAS  Google Scholar 

  45. De La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  46. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr 50, 760–763 (1994).

  47. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  48. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  49. Carson, M. Ribbsons. Methods Enzymol. 277, 493–505 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff at beamline X25 of National Synchrotron Light Source of Brookhaven Nation Laboratory for technical assistance during data collection. We also thank J. Shanklin, P. Freimuth, B.P. Rosen, C. Anderson, C. Correll, R. Kaplan and D. Mueller for critically reading the manuscript. This work was supported by the US National Institutes of Health (to D.F.), the US Office of Basic Energy Sciences, Department of Energy (to D.F.) and the Biology Department of Brookhaven National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dax Fu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 767 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Chai, J. & Fu, D. Structural basis for autoregulation of the zinc transporter YiiP. Nat Struct Mol Biol 16, 1063–1067 (2009). https://doi.org/10.1038/nsmb.1662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1662

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing