Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis

Abstract

ID4 (inhibitor of DNA binding 4) is a member of a family of proteins that function as dominant-negative regulators of basic helix-loop-helix transcription factors. Growing evidence links ID proteins to cell proliferation, differentiation and tumorigenesis. Here we identify ID4 as a transcriptional target of gain-of-function p53 mutants R175H, R273H and R280K. Depletion of mutant p53 protein severely impairs ID4 expression in proliferating tumor cells. The protein complex mutant p53–E2F1 assembles on specific regions of the ID4 promoter and positively controls ID4 expression. The ID4 protein binds to and stabilizes mRNAs encoding pro-angiogenic factors IL8 and GRO-α. This results in the increase of the angiogenic potential of cancer cells expressing mutant p53. These findings highlight the transcriptional axis mutant p53, E2F1 and ID4 as a still undefined molecular mechanism contributing to tumor neo-angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ID4 expression is transcriptionally induced by mutant p53.
Figure 2: Mutant p53 drives the expression of ID4 and associates with its promoter.
Figure 3: Transcriptionally competent protein complexes containing mutant p53 assemble in vivo on ID4 promoter.
Figure 4: E2F1 is required for mutant p53-mediated ID4 transcription.
Figure 5: Mutant p53 and ID4 expression promote angiogenesis.
Figure 6: ID4 promotes IL8 and GRO-α expression.
Figure 7: ID4 binds and stabilizes IL-8 and GRO-α mRNAs.
Figure 8: Expression of ID4 protein pairs with p53 positivity and high microvessel density (MVD) in breast cancer (BC) specimens.

Similar content being viewed by others

References

  1. Norton, J.D. ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J. Cell Sci. 113, 3897–3905 (2000).

    CAS  PubMed  Google Scholar 

  2. Yokota, Y. & Mori, S. Role of Id family proteins in growth control. J. Cell. Physiol. 190, 21–28 (2002).

    Article  CAS  Google Scholar 

  3. Ruzinova, M.B. & Benezra, R. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 13, 410–418 (2003).

    Article  CAS  Google Scholar 

  4. Lasorella, A., Uo, T. & Iavarone, A. Id proteins at the cross-road of development and cancer. Oncogene 20, 8326–8333 (2001).

    Article  CAS  Google Scholar 

  5. Fong, S., Debs, R.J. & Desprez, P.Y. Id genes and proteins as promising targets in cancer therapy. Trends Mol. Med. 10, 387–392 (2004).

    Article  CAS  Google Scholar 

  6. Perk, J., Iavarone, A. & Benezra, R. Id family of helix-loop-helix proteins in cancer. Nat. Rev. Cancer 5, 603–614 (2005).

    Article  CAS  Google Scholar 

  7. Beger, C. et al. Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library–based inverse genomics approach. Proc. Natl. Acad. Sci. USA 98, 130–135 (2001).

    Article  CAS  Google Scholar 

  8. Welcsh, P.L. et al. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc. Natl. Acad. Sci. USA 99, 7560–7565 (2002).

    Article  CAS  Google Scholar 

  9. Shan, L., Yu, M., Qiu, C. & Snyderwine, E.G. Id4 regulates mammary epithelial cell growth and differentiation and is overexpressed in rat mammary gland carcinomas. Am. J. Pathol. 163, 2495–2502 (2003).

    Article  CAS  Google Scholar 

  10. de Candia, P., Akram, M., Benezra, R. & Brogi, E. Id4 messenger RNA and estrogen receptor expression: inverse correlation in human normal breast epithelium and carcinoma. Hum. Pathol. 37, 1032–1041 (2006).

    Article  CAS  Google Scholar 

  11. Sigal, A. & Rotter, V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793 (2000).

    CAS  PubMed  Google Scholar 

  12. Cadwell, C. & Zambetti, G.P. The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 277, 15–30 (2001).

    Article  CAS  Google Scholar 

  13. Gualberto, A., Aldape, K., Kozakiewicz, K. & Tlsty, T.D. An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. Proc. Natl. Acad. Sci. USA 95, 5166–5171 (1998).

    Article  CAS  Google Scholar 

  14. Murphy, K.L., Dennis, A.P. & Rosen, J.M. A gain of function p53 mutant promotes both genomic instability and cell survival in a novel p53-null mammary epithelial cell model. FASEB J. 14, 2291–2302 (2000).

    Article  CAS  Google Scholar 

  15. Lotem, J. & Sachs, L.A. Mutant p53 antagonizes the deregulated c-myc-mediated enhancement of apoptosis and decrease in leukemogenicity. Proc. Natl. Acad. Sci. USA 92, 9672–9676 (1995).

    Article  CAS  Google Scholar 

  16. Li, R. et al. Mutant p53 protein expression interferes with p53-independent apoptotic pathways. Oncogene 16, 3269–3277 (1998).

    Article  CAS  Google Scholar 

  17. Blandino, G., Levine, A.J. & Oren, M. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18, 477–485 (1999).

    Article  CAS  Google Scholar 

  18. Matas, D. et al. Integrity of the N-terminal transcription domain of p53 is required for mutant p53 interference with drug-induced apoptosis. EMBO J. 20, 4163–4172 (2001).

    Article  CAS  Google Scholar 

  19. Bossi, G. et al. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene 25, 304–309 (2006).

    Article  CAS  Google Scholar 

  20. Strano, S. et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J. Biol. Chem. 275, 29503–29512 (2000).

    Article  CAS  Google Scholar 

  21. Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 21, 1874–1887 (2001).

    Article  CAS  Google Scholar 

  22. Lin, J., Teresky, A.K. & Levine, A.J. Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene 10, 2387–2390 (1995).

    CAS  PubMed  Google Scholar 

  23. Kim, E. & Deppert, W. Transcriptional activities of mutant p53: when mutations are more than a loss. J. Cell. Biochem. 93, 878–886 (2004).

    Article  CAS  Google Scholar 

  24. Di Agostino, S. et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10, 191–202 (2006).

    Article  CAS  Google Scholar 

  25. Strano, S. et al. Mutant p53 proteins: between loss and gain of function. Head Neck 29, 488–496 (2007).

    Article  Google Scholar 

  26. Weisz, L., Oren, M. & Rotter, V. Transcription regulation by mutant p53. Oncogene 26, 2202–2211 (2007).

    Article  CAS  Google Scholar 

  27. Rhodes, D.R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6 (2004).

    Article  CAS  Google Scholar 

  28. Neve, R.M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    Article  CAS  Google Scholar 

  29. Liu, N., Lucibello, F.C., Engeland, K. & Muller, R. A new model of cell cycle-regulated transcription: repression of the cyclin A promoter by CDF-1 and anti-repression by E2F. Oncogene 16, 2957–2963 (1998).

    Article  CAS  Google Scholar 

  30. Fogal, V., Hsieh, K., Royer, C., Zhong, S. & Lu, X. Cell cycle-dependent nuclear retention of p53 by E2F1 requires phosphorylation of p53 at Ser315. EMBO J. 24, 2768–2782 (2005).

    Article  CAS  Google Scholar 

  31. Qin, G. et al. Cell cycle regulator E2F1 modulates angiogenesis via p53-dependent transcriptional control of VEGF. Proc. Natl. Acad. Sci. USA 103, 11015–11020 (2006).

    Article  CAS  Google Scholar 

  32. Caunt, M. et al. Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Res. 66, 4125–4132 (2006).

    Article  CAS  Google Scholar 

  33. Waugh, D.J. & Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 14, 6735–6741 (2008).

    Article  CAS  Google Scholar 

  34. Anderson, P. Post-transcriptional control of cytokine production. Nat. Immunol. 9, 353–359 (2008).

    Article  CAS  Google Scholar 

  35. Datta, S. et al. Tristetraprolin regulates CXCL1 (KC) mRNA stability. J. Immunol. 180, 2545–2552 (2008).

    Article  CAS  Google Scholar 

  36. Vasudevan, S. & Steitz, J.A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128, 1105–1118 (2007).

    Article  CAS  Google Scholar 

  37. Espel, E. The role of the AU-rich elements of mRNAs in controlling translation. Semin. Cell Dev. Biol. 16, 59–67 (2005).

    Article  CAS  Google Scholar 

  38. Barreau, C., Paillard, L. & Osborne, H.B. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33, 7138–7150 (2005).

    Article  CAS  Google Scholar 

  39. Zalcenstein, A. et al. Repression of the MSP/MST-1 gene contributes to the antiapoptotic gain of function of mutant p53. Oncogene 25, 359–369 (2006).

    Article  CAS  Google Scholar 

  40. Zalcenstein, A. et al. Mutant p53 gain of function: repression of CD95 (Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene 22, 5667–5676 (2003).

    Article  CAS  Google Scholar 

  41. Weisz, L. et al. Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res. 64, 8318–8327 (2004).

    Article  CAS  Google Scholar 

  42. Gualberto, A. & Baldwin, A.S. Jr. p53 and Sp1 interact and cooperate in the tumor necrosis factor-induced transcriptional activation of the HIV-1 long terminal repeat. J. Biol. Chem. 270, 19680–19683 (1995).

    Article  CAS  Google Scholar 

  43. Chicas, A., Molina, P. & Bargonetti, J. Mutant p53 forms a complex with Sp1 on HIV-LTR DNA. Biochem. Biophys. Res. Commun. 279, 383–390 (2000).

    Article  CAS  Google Scholar 

  44. Sampath, J. et al. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J. Biol. Chem. 276, 39359–39367 (2001).

    Article  CAS  Google Scholar 

  45. Lyden, D. et al. ID1 and ID3 are required for neurogenesis, angiogenesis and vascularization of tumor xenografts. Nature 401, 670–677 (1999).

    Article  CAS  Google Scholar 

  46. Linderholm, B.K. et al. The expression of vascular endothelial growth factor correlates with mutant p53 and poor prognosis in human breast cancer. Cancer Res. 61, 2256–2260 (2001).

    CAS  PubMed  Google Scholar 

  47. Fontemaggi, G. et al. Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J. Biol. Chem. 277, 43359–43368 (2002).

    Article  CAS  Google Scholar 

  48. Pagliuca, A., Cannada-Bartoli, P. & Lania, L. A role for Sp and helix-loop-helix transcription factors in the regulation of the human Id4 gene promoter activity. J. Biol. Chem. 273, 7668–7674 (1998).

    Article  CAS  Google Scholar 

  49. Samanta, J. & Kessler, J.A. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131, 4131–4142 (2004).

    Article  CAS  Google Scholar 

  50. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  51. Fontemaggi, G. et al. The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Mol. Cell. Biol. 21, 8461–8470 (2001).

    Article  CAS  Google Scholar 

  52. Sanvito, F. et al. The β4 integrin interactor p27(BBP/eIF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly. J. Cell Biol. 144, 823–837 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J.A. Kessler (Northwestern University's Feinberg School of Medicine) and L. Lania (University of Naples Federico II) for providing plasmids. We also thank G. Starace (Italian National Research Council (CNR)) for cell sorting. This work was supported by European Community (EC) FP6 “Active p53” and “Mutant p53” consortia. This publication reflects the authors' views and not necessarily those of the EC. The EC is not liable for any use that may be made of the information contained herein. Support by Associazione Italiana per la Ricerca sul Cancro (AIRC)-Rome Oncogenic Centre (ROC) to the oncogenomic platform, AIRC to G.B., S.S., F.F. and D.D.B., Lega Italiana Tumori to S.S., Ministero della Sanità and Alleanza contro il cancro is greatly appreciated. S.D.O. holds a fellowship from Italian Association for Cancer Research (FIRC).

Author information

Authors and Affiliations

Authors

Contributions

G.F. and S.D.O. performed microarrays, transcriptional and mRNA stability studies, chromatin and ribonucleoprotein immunoprecipitations; E.D. and T.S. performed bioinformatic analysis of microarray data; F.F. performed studies on polysomal cell fractions; M.M. and E.M. performed stainings on breast cancer specimens; I.T. and P.M. performed statistical analysis of breast cancer immunohistochemical data; D.D.B. and D.T. performed angiogenic assays. G.B., G.F. and S.S. supervised the project.

Corresponding author

Correspondence to Giovanni Blandino.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–3 and Supplementary Methods (PDF 706 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontemaggi, G., Dell'Orso, S., Trisciuoglio, D. et al. The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol 16, 1086–1093 (2009). https://doi.org/10.1038/nsmb.1669

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1669

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing