Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

THAP proteins target specific DNA sites through bipartite recognition of adjacent major and minor grooves

Abstract

THAP-family C2CH zinc-coordinating DNA-binding proteins function in diverse eukaryotic cellular processes, such as transposition, transcriptional repression, stem-cell pluripotency, angiogenesis and neurological function. To determine the molecular basis for sequence-specific DNA recognition by THAP proteins, we solved the crystal structure of the Drosophila melanogaster P element transposase THAP domain (DmTHAP) in complex with a natural 10-base-pair site. In contrast to C2H2 zinc fingers, DmTHAP docks a conserved β-sheet into the major groove and a basic C-terminal loop into the adjacent minor groove. We confirmed specific protein-DNA interactions by mutagenesis and DNA-binding assays. Sequence analysis of natural and in vitro–selected binding sites suggests that several THAPs (DmTHAP and human THAP1 and THAP9) recognize a bipartite TXXGGGX(A/T) consensus motif; homology suggests THAP proteins bind DNA through a bipartite interaction. These findings reveal the conserved mechanisms by which THAP-family proteins engage specific chromosomal target elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of DmTHAP–DNA complex and specific interactions with DNA.
Figure 2: Base-specific DmTHAP–DNA contacts.
Figure 3: Affinity determination of DmTHAP specificity mutants by EMSA.
Figure 4: Bipartite sequence readout by THAP proteins.
Figure 5: DmTHAP binds DNA in a manner distinct from the canonical zinc fingers.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lee, C.C., Beall, E.L. & Rio, D.C. DNA binding by the KP repressor protein inhibits P-element transposase activity in vitro. EMBO J. 17, 4166–4174 (1998).

    Article  CAS  Google Scholar 

  2. Lee, C.C., Mul, Y.M. & Rio, D.C. The Drosophila P-element KP repressor protein dimerizes and interacts with multiple sites on P-element DNA. Mol. Cell. Biol. 16, 5616–5622 (1996).

    Article  CAS  Google Scholar 

  3. Finn, R.D. et al. The Pfam protein families database. Nucleic Acids Res. 36, D281–D288 (2008).

    Article  CAS  Google Scholar 

  4. Roussigne, M. et al. The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. Trends Biochem. Sci. 28, 66–69 (2003).

    Article  CAS  Google Scholar 

  5. Quesneville, H., Nouaud, D. & Anxolabehere, D. Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element. Mol. Biol. Evol. 22, 741–746 (2005).

    Article  CAS  Google Scholar 

  6. Nicholas, H.R., Lowry, J.A., Wu, T. & Crossley, M. The Caenorhabditis elegans protein CTBP-1 defines a new group of THAP domain-containing CtBP corepressors. J. Mol. Biol. 375, 1–11 (2008).

    Article  CAS  Google Scholar 

  7. Bessiere, D. et al. Structure-function analysis of the THAP zinc finger of THAP1, a large C2CH DNA-binding module linked to Rb/E2F pathways. J. Biol. Chem. 283, 4352–4363 (2008).

    Article  CAS  Google Scholar 

  8. Clouaire, T. et al. The THAP domain of THAP1 is a large C2CH module with zinc-dependent sequence-specific DNA-binding activity. Proc. Natl. Acad. Sci. USA 102, 6907–6912 (2005).

    Article  CAS  Google Scholar 

  9. Fuchs, T. et al. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat. Genet. 41, 286–288 (2009).

    Article  CAS  Google Scholar 

  10. Wolfe, S.A., Nekludova, L. & Pabo,, C.O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000).

    Article  CAS  Google Scholar 

  11. Luscombe, N.M., Austin, S.E., Berman, H.M. & Thornton, J.M. An overview of the structures of protein-DNA complexes. Genome Biol. 1 reviews001.1–001.10 (2000).

  12. Liew, C.K., Crossley, M., Mackay, J.P. & Nicholas, H.R. Solution structure of the THAP domain from Caenorhabditis elegans C-terminal binding protein (CtBP). J. Mol. Biol. 366, 382–390 (2007).

    Article  CAS  Google Scholar 

  13. Hammer, S.E., Strehl, S. & Hagemann, S. Homologs of Drosophila P transposons were mobile in zebrafish but have been domesticated in a common ancestor of chicken and human. Mol. Biol. Evol. 22, 833–844 (2005).

    Article  CAS  Google Scholar 

  14. Macfarlan, T. et al. Human THAP7 is a chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor. J. Biol. Chem. 280, 7346–7358 (2005).

    Article  CAS  Google Scholar 

  15. Macfarlan, T., Parker, J.B., Nagata, K. & Chakravarti, D. Thanatos-associated protein 7 associates with template activating factor-Iβ and inhibits histone acetylation to repress transcription. Mol. Endocrinol. 20, 335–347 (2006).

    Article  CAS  Google Scholar 

  16. Lin, Y., Khokhlatchev, A., Figeys, D. & Avruch, J. Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. J. Biol. Chem. 277, 47991–48001 (2002).

    Article  CAS  Google Scholar 

  17. Roussigne, M., Cayrol, C., Clouaire, T., Amalric, F. & Girard, J.P. THAP1 is a nuclear proapoptotic factor that links prostate-apoptosis-response-4 (Par-4) to PML nuclear bodies. Oncogene 22, 2432–2442 (2003).

    Article  CAS  Google Scholar 

  18. Balakrishnan, M.P. et al. THAP5 is a human cardiac-specific inhibitor of cell cycle that is cleaved by the proapoptotic Omi/HtrA2 protease during cell death. Am. J. Physiol. Heart Circ. Physiol. 297, H643–H653 (2009).

    Article  CAS  Google Scholar 

  19. Dejosez, M. et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 133, 1162–1174 (2008).

    Article  CAS  Google Scholar 

  20. Cayrol, C. et al. The THAP-zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes. Blood 109, 584–594 (2007).

    Article  CAS  Google Scholar 

  21. De Souza Santos, E., De Bessa, S.A., Netto, M.M. & Nagai, M.A. Silencing of LRRC49 and THAP10 genes by bidirectional promoter hypermethylation is a frequent event in breast cancer. Int. J. Oncol. 33, 25–31 (2008).

    CAS  PubMed  Google Scholar 

  22. Zhu, C.Y. et al. Cell growth suppression by thanatos-associated protein 11(THAP11) is mediated by transcriptional downregulation of c-Myc. Cell Death Differ. 16, 395–405 (2009).

    Article  CAS  Google Scholar 

  23. Luscombe, N.M., Laskowski, R.A. & Thornton, J.M. Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res. 29, 2860–2874 (2001).

    Article  CAS  Google Scholar 

  24. Kaufman, P.D., Doll, R.F. & Rio, D.C. Drosophila P element transposase recognizes internal P element DNA sequences. Cell 59, 359–371 (1989).

    Article  CAS  Google Scholar 

  25. Pavletich, N.P. & Pabo, C.O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252, 809–817 (1991).

    Article  CAS  Google Scholar 

  26. Suzuki, M. DNA recognition by a β-sheet. Protein Eng. 8, 1–4 (1995).

    Article  CAS  Google Scholar 

  27. Fadeev, E.A., Sam, M.D. & Clubb, R.T. NMR structure of the amino-terminal domain of the λ integrase protein in complex with DNA: immobilization of a flexible tail facilitates β-sheet recognition of the major groove. J. Mol. Biol. 388, 682–690 (2009).

    Article  CAS  Google Scholar 

  28. Wojciak, J.M., Connolly, K.M. & Clubb, R.T. NMR structure of the Tn916 integrase-DNA complex. Nat. Struct. Biol. 6, 366–373 (1999).

    Article  CAS  Google Scholar 

  29. Geierstanger, B.H., Volkman, B.F., Kremer, W. & Wemmer, D.E. Short peptide fragments derived from HMG-I/Y proteins bind specifically to the minor groove of DNA. Biochemistry 33, 5347–5355 (1994).

    Article  CAS  Google Scholar 

  30. Schneider, T.D. Strong minor groove base conservation in sequence logos implies DNA distortion or base flipping during replication and transcription initiation. Nucleic Acids Res. 29, 4881–4891 (2001).

    Article  CAS  Google Scholar 

  31. Muller, U. The monogenic primary dystonias. Brain 132, 2005–2025 (2009).

    Article  Google Scholar 

  32. Elrod-Erickson, M., Rould, M.A., Nekludova, L. & Pabo, C.O. Zif268 protein-DNA complex refined at 1.6 Å: a model system for understanding zinc finger-DNA interactions. Structure 4, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  33. Schildbach, J.F., Karzai, A.W., Raumann, B.E. & Sauer, R.T. Origins of DNA-binding specificity: role of protein contacts with the DNA backbone. Proc. Natl. Acad. Sci. USA 96, 811–817 (1999).

    Article  CAS  Google Scholar 

  34. Somers, W.S. & Phillips, S.E. Crystal structure of the met repressor-operator complex at 2.8 Å resolution reveals DNA recognition by β-strands. Nature 359, 387–393 (1992).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. in Methods in Enzymology Vol. 276 (eds. Carter, C.W.J. & Sweet, R.M.) 307–325 (Academic Press, Boston, 1997).

  36. Zwart, P.H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).

    Article  CAS  Google Scholar 

  37. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  38. Terwilliger, T.C. Maximum-likelihood density modification using pattern recognition of structural motifs. Acta Crystallogr. D Biol. Crystallogr. 57, 1755–1762 (2001).

    Article  CAS  Google Scholar 

  39. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  40. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  41. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  42. Vaguine, A.A., Richelle, J. & Wodak, S.J. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. D Biol. Crystallogr. 55, 191–205 (1999).

    Article  CAS  Google Scholar 

  43. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  44. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

  45. Kelley, L.A. & Sternberg, M.J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  Google Scholar 

  46. Lu, X.J. & Olson, W.K. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat. Protoc. 3, 1213–1227 (2008).

    Article  CAS  Google Scholar 

  47. Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D. & Zakrzewska, K. Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res. 37, 5917–5929 (2009).

    Article  CAS  Google Scholar 

  48. Poirot, O., Suhre, K., Abergel, C., O′Toole, E. & Notredame, C. 3DCoffee@igs: a web server for combining sequences and structures into a multiple sequence alignment. Nucleic Acids Res. 32, W37–40 (2004).

    Article  CAS  Google Scholar 

  49. O'Sullivan, O., Suhre, K., Abergel, C., Higgins, D.G. & Notredame, C. 3DCoffee: combining protein sequences and structures within multiple sequence alignments. J. Mol. Biol. 340, 385–395 (2004).

    Article  CAS  Google Scholar 

  50. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  Google Scholar 

  51. Roulet, E. et al. High-throughput SELEX SAGE method for quantitative modeling of transcription-factor binding sites. Nat. Biotechnol. 20, 831–835 (2002).

    Article  CAS  Google Scholar 

  52. Schneider, T.D., Stormo, G.D., Yarus, M.A. & Gold, L. Delila system tools. Nucleic Acids Res. 12, 129–140 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Gureasko and J. Kuriyan (Univ. California, Berkeley) for use of equipment and technical expertise, E. Abbate and M. Botchan (Univ. California, Berkeley) for crystallography supplies and experimental design, N. Echols and T. Alber (Univ. California, Berkeley) for use of equipment and assistance with data collection, J. Holton for assistance with data collection, A. May (Fluidigm) for crystallography supplies and assistance with data collection, D. King (Univ. California, Berkeley, and Howard Hughes Medical Institute Mass Spectrometry Laboratory) for MS analysis, N. Ogowa and M. Biggin (Univ. California, Berkeley) for reagents and expertise for the SELEX protocol, R. Schultzaberger and M. Eisen for assistance with SELEX data analysis and for creating the sequence logos, K. Collins for data analysis and D. Wemmer, M. Levine and M. Botchan for critical reading of the manuscript. A.Y.L. is supported by an American Cancer Society postdoctoral fellowship, J.M.B. by the US National Cancer Institute (CA077307) and D.C.R. by the National Institute of General Medical Sciences (GM61987).

Author information

Authors and Affiliations

Authors

Contributions

A.S. and D.C.R. conceived the experiments; D.C.R. synthesized brominated DNA oligonucleotides; A.S. purified the proteins and nucleic acids and crystallized the complex; J.E.C., A.Y.L. and J.M.B. provided guidance in crystallography trials; A.Y.L. and A.S. collected and analyzed the structural data; J.M.B. assisted with model building and refinement; A.Y.L. solved the structure and made all structural models; A.S. performed the DmTHAP mutagenesis and biochemistry, the SELEX experiment for human THAP9 and the THAP DNA-binding-site sequence analysis; A.S., A.Y.L., J.M.B. and D.C.R. wrote the paper.

Corresponding author

Correspondence to Donald C Rio.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabogal, A., Lyubimov, A., Corn, J. et al. THAP proteins target specific DNA sites through bipartite recognition of adjacent major and minor grooves. Nat Struct Mol Biol 17, 117–123 (2010). https://doi.org/10.1038/nsmb.1742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1742

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing