Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic structure of membrane-anchored Arf•GTP

Abstract

ADP ribosylation factors (Arfs) are N-myristoylated GTP/GDP switch proteins that have key regulatory roles in vesicle transport in eukaryotic cells. ARFs execute their roles by anchoring to membrane surfaces, where they interact with other proteins to initiate budding and maturation of transport vesicles. However, existing structures of Arf•GTP are limited to nonmyristoylated and truncated forms with impaired membrane binding. We report a high-resolution NMR structure for full-length myristoylated yeast (Saccharomyces cerevisiae) Arf1 in complex with a membrane mimic. The two-domain structure, in which the myristoylated N-terminal helix is separated from the C-terminal domain by a flexible linker, suggests a level of adaptability in binding modes for the myriad of proteins with which Arf interacts and allows predictions of specific lipid binding sites on some of these proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of myr-yArf1•GTP in a bicelle solution.
Figure 2: Lipid interaction of myr-yArf1 studied through rotational correction times (τc).
Figure 3: Ensemble structural fitting to RDCs and PREs.
Figure 4: Reweighted atomic density maps of the C-terminal domain (Glu17–Leu177) showing the space on the membrane surface that is sampled by the three dynamic states.
Figure 5: Modeling of Arf complexes on the membrane.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Kahn, R.A. Toward a model for Arf GTPases as regulators of traffic at the Golgi. FEBS Lett. 583, 3872–3879 (2009).

    Article  CAS  Google Scholar 

  2. Luo, R., Ha, V.L., Hayashi, R. & Randazzo, P.A. Arf GAP2 is positively regulated by coatomer and cargo. Cell. Signal. 21, 1169–1179 (2009).

    Article  CAS  Google Scholar 

  3. Pucadyil, T.J. & Schmid, S.L. Conserved functions of membrane active GTPases in coated vesicle formation. Science 325, 1217–1220 (2009).

    Article  CAS  Google Scholar 

  4. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7, 347–358 (2006).

    Article  CAS  Google Scholar 

  5. Casanova, J.E. Regulation of arf activation: the sec7 family of guanine nucleotide exchange factors. Traffic 8, 1476–1485 (2007).

    Article  CAS  Google Scholar 

  6. Gillingham, A.K. & Munro, S. The small G proteins of the arf family and their regulators. Annu. Rev. Cell Dev. Biol. 23, 579–611 (2007).

    Article  CAS  Google Scholar 

  7. Inoue, H. & Randazzo, P.A. Arf GAPs and their interacting proteins. Traffic 8, 1465–1475 (2007).

    Article  CAS  Google Scholar 

  8. Renault, L., Guibert, B. & Cherfils, J. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426, 525–530 (2003).

    Article  CAS  Google Scholar 

  9. Shiba, T. et al. Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport. Nat. Struct. Biol. 10, 386–393 (2003).

    Article  CAS  Google Scholar 

  10. Menetrey, J. et al. Structural basis for ARF1-mediated recruitment of ARHGAP21 to Golgi membranes. EMBO J. 26, 1953–1962 (2007).

    Article  CAS  Google Scholar 

  11. Amor, J.C., Harrison, D.H., Kahn, R.A. & Ringe, D. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704–708 (1994).

    Article  CAS  Google Scholar 

  12. Goldberg, J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237–248 (1998).

    Article  CAS  Google Scholar 

  13. Liu, Y., Kahn, R.A. & Prestegard, J.H. Structure and membrane interaction of myristoylated ARF1. Structure 17, 79–87 (2009).

    Article  CAS  Google Scholar 

  14. Amor, J.C. et al. Structures of yeast ARF2 and ARL1: distinct roles for the N terminus in the structure and function of ARF family GTPases. J. Biol. Chem. 276, 42477–42484 (2001).

    Article  CAS  Google Scholar 

  15. Liu, Y. & Prestegard, J.H. Direct measurement of dipole-dipole/CSA cross-correlated relaxation by a constant-time experiment. J. Magn. Reson. 193, 23–31 (2008).

    Article  CAS  Google Scholar 

  16. Losonczi, J.A. & Prestegard, J.H. Nuclear magnetic resonance characterization of the myristoylated, N-terminal fragment of ADP-ribosylation factor 1 in a magnetically oriented membrane array. Biochemistry 37, 706–716 (1998).

    Article  CAS  Google Scholar 

  17. Losonczi, J.A., Tian, F. & Prestegard, J.H. Nuclear magnetic resonance studies of the N-terminal fragment of adenosine diphosphate ribosylation factor 1 in micelles and bicelles: influence of N-myristoylation. Biochemistry 39, 3804–3816 (2000).

    Article  CAS  Google Scholar 

  18. Vold, R.R. & Prosser, R.S. Magnetically oriented phospholipid bilayered micelles for structural studies of polypeptides. Does the ideal bicelle exist? J. Magn. Reson. 113, 267–271 (1996).

    Article  CAS  Google Scholar 

  19. Lee, D. et al. Bilayer in small bicelles revealed by lipid-protein interactions using NMR spectroscopy. J. Am. Chem. Soc. 130, 13822–13823 (2008).

    Article  CAS  Google Scholar 

  20. Fischer, M.W.F., Losonczi, J.A., Weaver, J.L. & Prestegard, J.H. Domain orientation and dynamics in multidomain proteins from residual dipolar couplings. Biochemistry 38, 9013–9022 (1999).

    Article  CAS  Google Scholar 

  21. Tolman, J.R. & Ruan, K. NMR residual dipolar couplings as probes of biomolecular dynamics. Chem. Rev. 106, 1720–1736 (2006).

    Article  CAS  Google Scholar 

  22. Tolman, J.R., Al-Hashimi, H.M., Kay, L.E. & Prestegard, J.H. Structural and dynamic analysis of residual dipolar coupling data for proteins. J. Am. Chem. Soc. 123, 1416–1424 (2001).

    Article  CAS  Google Scholar 

  23. Hubbell, W.L. & Altenbach, C. Investigation of structure and dynamics in membrane-proteins using site-directed spin-labeling. Curr. Opin. Struct. Biol. 4, 566–573 (1994).

    Article  CAS  Google Scholar 

  24. Clore, G.M., Tang, C. & Iwahara, J. Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr. Opin. Struct. Biol. 17, 603–616 (2007).

    Article  CAS  Google Scholar 

  25. Tang, C., Iwahara, J. & Clore, G.M. Visualization of transient encounter complexes in protein-protein association. Nature 444, 383–386 (2006).

    Article  CAS  Google Scholar 

  26. Iwahara, J., Schwieters, C.D. & Clore, G.M. Ensemble approach for NMR structure refinement against 1H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J. Am. Chem. Soc. 126, 5879–5896 (2004).

    Article  CAS  Google Scholar 

  27. Solomon, I. & Bloembergen, N. Nuclear magnetic interactions in the Hf molecule. J. Chem. Phys. 25, 261–266 (1956).

    Article  CAS  Google Scholar 

  28. Bruschweiler, R. et al. Influence of rapid intramolecular motion on NMR cross-relaxation rates - a molecular-dynamics study of antamanide in solution. J. Am. Chem. Soc. 114, 2289–2302 (1992).

    Article  Google Scholar 

  29. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  30. Schwieters, C.D. & Clore, G.M. Reweighted atomic densities to represent ensembles of NMR structures. J. Biomol. NMR 23, 221–225 (2002).

    Article  CAS  Google Scholar 

  31. Ambroggio, E. et al. ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions. EMBO J. 29, 292–303 (2010).

    Article  CAS  Google Scholar 

  32. Prestegard, J.H. & Obrien, M.P. Membrane and vesicle fusion. Annu. Rev. Phys. Chem. 38, 383–411 (1987).

    Article  CAS  Google Scholar 

  33. Cevc, G. & Richardsen, H. Lipid vesicles and membrane fusion. Adv. Drug Deliv. Rev. 38, 207–232 (1999).

    Article  CAS  Google Scholar 

  34. Cukierman, E., Huber, I., Rotman, M. & Cassel, D. The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999–2002 (1995).

    Article  CAS  Google Scholar 

  35. Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat. Cell Biol. 6, 393–404 (2004).

    Article  CAS  Google Scholar 

  36. D'Angelo, G. et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449, 62–67 (2007).

    Article  CAS  Google Scholar 

  37. Baraldi, E. et al. Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure 7, 449–460 (1999).

    Article  CAS  Google Scholar 

  38. Seidel, R.D., Amor, J.C., Kahn, R.A. & Prestegard, J.H. Structural perturbations in human ADP ribosylation factor-1 accompanying the binding of phosphatidylinositides. Biochemistry 43, 15393–15403 (2004).

    Article  CAS  Google Scholar 

  39. Randazzo, P.A. Functional interaction of ADP-ribosylation factor 1 with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 272, 7688–7692 (1997).

    CAS  PubMed  Google Scholar 

  40. Jian, X., Cavenagh, M., Gruschus, J.M., Randazzo, P.A. & Kahn, R.A. Modifications to the C-terminus of Arf1 alter cell functions and protein interactions. Traffic 11, 732–742 (2010).

    Article  CAS  Google Scholar 

  41. Cornilescu, G., Marquardt, J.L., Ottiger, M. & Bax, A. Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J. Am. Chem. Soc. 120, 6836–6837 (1998).

    Article  CAS  Google Scholar 

  42. Battiste, J.L. & Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data. Biochemistry 39, 5355–5365 (2000).

    Article  CAS  Google Scholar 

  43. Liang, B., Bushweller, J.H. & Tamm, L.K. Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J. Am. Chem. Soc. 128, 4389–4397 (2006).

    Article  CAS  Google Scholar 

  44. Liu, Y. & Prestegard, J.H. Measurement of one and two bond N-C couplings in large proteins by TROSY-based J-modulation experiments. J. Magn. Reson. 200, 109–118 (2009).

    Article  CAS  Google Scholar 

  45. Permi, P., Tossavainen, H. & Hellman, M. Efficient assignment of methyl resonances: enhanced sensitivity by gradient selection in a DE-MQ-(H)CC(m)Ht (m)-TOCSY experiment. J. Biomol. NMR 30, 275–282 (2004).

    Article  CAS  Google Scholar 

  46. Yang, D., Zheng, Y., Liu, D. & Wyss, D.F. Sequence-specific assignments of methyl groups in high-molecular weight proteins. J. Am. Chem. Soc. 126, 3710–3711 (2004).

    Article  CAS  Google Scholar 

  47. Cierpicki, T. & Bushweller, J.H. Charged gels as orienting media for measurement of residual dipolar couplings in soluble and integral membrane proteins. J. Am. Chem. Soc. 126, 16259–16266 (2004).

    Article  CAS  Google Scholar 

  48. Iwahara, J., Tang, C. & Marius Clore, G. Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules. J. Magn. Reson. 184, 185–195 (2007).

    Article  CAS  Google Scholar 

  49. Schwieters, C.D., Kuszewski, J.J. & Clore, G.M. Using Xplor-NIH for NMR molecular structure determination. Prog. Nucl. Magn. Reson. Spectrosc. 48, 47–62 (2006).

    Article  CAS  Google Scholar 

  50. Schwieters, C.D. & Clore, G.M. Internal coordinates for molecular dynamics and minimization in structure determination and refinement. J. Magn. Reson. 152, 288–302 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Demarco (Complex Carbohydrate Research Center, Univ. of Georgia) for kindly providing the model membrane structure and C. Schwieters (Center for Information Technology, US National Institutes of Health) for kindly providing the prerelease version of Xplor-NIH that supports ambiguous RDC assignment. This work was supported by a grant from the US National Institutes of Health (GM61268).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. produced the samples and collected and analyzed all data; J.H.P. and R.A.K. devised the project and jointly contributed interpretation of data and drafting of the manuscript.

Corresponding authors

Correspondence to Richard A Kahn or James H Prestegard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Methods (PDF 1572 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Kahn, R. & Prestegard, J. Dynamic structure of membrane-anchored Arf•GTP. Nat Struct Mol Biol 17, 876–881 (2010). https://doi.org/10.1038/nsmb.1853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing