Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates

Abstract

Prdm14 is a PR-domain and zinc-finger protein whose expression is restricted to the pluripotent cells of the early embryo, embryonic stem cells (ESCs), and germ cells. Here, we show that Prdm14 safeguards mouse ESC (mESC) maintenance by preventing induction of extraembryonic endoderm (ExEn) fates. Conversely, Prdm14 overexpression impairs ExEn differentiation during embryoid body formation. Prdm14 occupies and represses genomic loci encoding ExEn differentiation factors, while also binding to and promoting expression of genes associated with mESC self-renewal. Prdm14-associated genomic regions substantially overlap those occupied by Nanog and Oct4, are enriched in a chromatin signature associated with distal regulatory elements and contain a unique DNA-sequence motif recognized by Prdm14 in vitro. Our work identifies a new member of the mESC transcriptional network, Prdm14, which plays a dual role as a context-dependent transcriptional repressor or activator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prdm14 downregulation in mESCs results in spontaneous differentiation to ExEn fates.
Figure 2: Analysis of gene expression changes upon Prdm14 knockdown in mESCs reveals upregulation of ExEn genes.
Figure 3: Failure to downregulate Prdm14 during embryoid body formation from mESCs impairs induction of ExEn fates.
Figure 4: Prdm14 targets loci encoding ExEn genes and mESC transcription factors.
Figure 5: Genome-wide analysis of Prdm14 chromatin occupancy.
Figure 6: Prdm14 recognizes a unique DNA sequence motif.
Figure 7: Model for Prdm14 function in mESC gene regulation.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Arnold, S.J. & Robertson, E.J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Albert, M. & Peters, A.H.F.M. Genetic and epigenetic control of early mouse development. Curr. Opin. Genet. Dev. 19, 113–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Cockburn, K. & Rossant, J. Making the blastocyst: lessons from the mouse. J. Clin. Invest. 120, 995–1003 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fujikura, J. et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 16, 784–789 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chazaud, C., Yamanaka, Y., Pawson, T. & Rossant, J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10, 615–624 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Plusa, B., Piliszek, A., Frankenberg, S., Artus, J. & Hadjantonakis, A.K. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135, 3081–3091 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Kurimoto, K. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34, e42 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yamanaka, Y., Lanner, F. & Rossant, J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137, 715–724 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Hamazaki, T., Kehoe, S.M., Nakano, T. & Terada, N. The Grb2/Mek pathway represses nanog in murine embryonic stem cells. Mol. Cell. Biol. 26, 7539–7549 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossant, J., Chazaud, C. & Yamanaka, Y. Lineage allocation and asymmetries in the early mouse embryo. Phil. Trans. R. Soc. Lond. B 358, 1341–1349 (2003).

    Article  CAS  Google Scholar 

  11. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES Cells. Cell 113, 631–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Seguin, C., Draper, J., Nagy, A. & Rossant, J. Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells. Cell Stem Cell 3, 182–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Niakan, K.K. et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev. 24, 312–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robertson, E.J. et al. Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice. Development 134, 4335–4345 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Bikoff, E.K., Morgan, M.A. & Robertson, E.J. An expanding job description for Blimp-1/PRDM1. Curr. Opin. Genet. Dev. 19, 379–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature 460, 1154–1158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davis, C.A. et al. PRISM/PRDM6, a transcriptional repressor that promotes the proliferative gene program in smooth muscle cells. Mol. Cell. Biol. 26, 2626–2636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurimoto, K., Yamaji, M., Seki, Y. & Saitou, M. Specification of the germ cell lineage in mice: a process orchestrated by the PR-domain proteins, Blimp1 and Prdm14. Cell Cycle 7, 3514–3518 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Bjork, B.C., Turbe-Doan, A., Prysak, M., Herron, B.J. & Beier, D.R. Prdm16 is required for normal palatogenesis in mice. Hum. Mol. Genet. 19, 774–789 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Meani, N., Pezzimenti, F., Deflorian, G., Mione, M. & Alcalay, M. The tumor suppressor PRDM5 regulates Wnt signaling at early stages of zebrafish development. PLoS One 4, e4273 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chuikov, S., Levi, B.P., Smith, M.L. & Morrison, S.J. Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat. Cell Biol. 12, 999–1006 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamaji, M. et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat. Genet. 40, 1016–1022 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Sado, T. Imprinted X inactivation and reprogramming in the preimplantation mouse embryo. Hum. Mol. Genet. 14, R59–R64 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Thorvaldsen, J., Verona, R. & Bartolomei, M. X-tra! X-tra! News from the mouse X chromosome. Dev. Biol. 298, 344–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Kunath, T. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132, 1649–1661 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Hudson, Q.J., Kulinski, T.M., Huetter, S.P. & Barlow, D.P. Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues. Heredity 105, 45–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Debeb, B.G. et al. Isolation of Oct4-expressing extraembryonic endoderm precursor cell lines. PLoS One 4, e7216 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Soudais, C. et al. Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development 121, 3877–3888 (1995).

    CAS  PubMed  Google Scholar 

  31. Morrisey, E.E. et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 12, 3579–3590 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Keller, A.D. & Maniatis, T. Only two of the five zinc fingers of the eukaryotic transcriptional repressor PRDI-BF1 are required for sequence-specific DNA binding. Mol. Cell. Biol. 12, 1940–1949 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. John, S.A. & Garrett-Sinha, L.A. Blimp1: a conserved transcriptional repressor critical for differentiation of many tissues. Exp. Cell Res. 315, 1077–1084 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Hochwagen, A. & Marais, G.A.B. Meiosis: a PRDM9 guide to the hotspots of recombination. Curr. Biol. 20, R271–R274 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Valouev, A. et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5, 829–834 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomioka, M. et al. Identification of Sox-2 regulatory region which is under the control of Oct-3/4–Sox-2 complex. Nucleic Acids Res. 30, 3202–3213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yeom, Y.I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894 (1996).

    CAS  PubMed  Google Scholar 

  39. Navarro, P. et al. Molecular coupling of Xist regulation and pluripotency. Science 321, 1693–1695 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type–specific gene expression. Nature 459, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schnetz, M.P. et al. CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet. 6, e1001023 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Myers, S. et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327, 876–879 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, J. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Loh, Y.-H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Guo, G. et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Shimoda, M. et al. Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro. J. Cell Sci. 120, 3859–3869 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Kanai-Azuma, M. et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129, 2367–2379 (2002).

    CAS  PubMed  Google Scholar 

  53. Chia, N.-Y. et al. A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468, 316–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Turner, C.A., Mack, D.H. & Davis, M.M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Vincent, S.D. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Horsley, V. et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126, 597–609 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  59. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M. & Gilad, Y. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Wysocka laboratory for helpful discussions and E. Grow, K. Murata, A. Roos, S. A. Brugmann, C. Buecker and A. Sidow for critical readings of the manuscript. This work was supported by the CIRM New Faculty Award (RN1 00579-1) and W. M. Keck Distinguished Young Scholar Award for J.W.

Author information

Authors and Affiliations

Authors

Contributions

Z.M. and J.W. conceived the project; Z.M. conducted experiments with input from J.W.; T.S. analyzed the RNA-seq data and contributed ideas; A.V., Z.M. and A.R.-I. analyzed ChIP-seq datasets. J.W. and Z.M. wrote the manuscript.

Corresponding author

Correspondence to Joanna Wysocka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Table 1 and Supplementary Table 2 (PDF 1275 kb)

Supplementary Data 1

Genes affected by Prdm14 downregulation (XLS 113 kb)

Supplementary Data 2

FH-Prdm14 ChIP-seq enriched regions (XLS 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z., Swigut, T., Valouev, A. et al. Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates. Nat Struct Mol Biol 18, 120–127 (2011). https://doi.org/10.1038/nsmb.2000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing