Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events

Abstract

Phosphorylation of Ser10 of histone H3 regulates chromosome condensation and transcriptional activity. Using time-resolved, high-resolution NMR spectroscopy, we demonstrate that histone H3 Ser10 phosphorylation inhibits checkpoint kinase 1 (Chk1)– and protein kinase C (PKC)–mediated modification of Thr11 and Thr6, the respective primary substrate sites of these kinases. On unmodified H3, both enzymes also target Ser10 and thereby establish autoinhibitory feedback states on individual H3 tails. Whereas phosphorylated Ser10 does not affect acetylation of Lys14 by Gcn5, phosphorylated Thr11 impedes acetylation. Our observations reveal mechanistic hierarchies of H3 phosphorylation and acetylation events and provide a framework for intramolecular modification cross-talk within the N terminus of histone H3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutually exclusive phosphorylation of H3 Thr11 and Ser10 by Chk1.
Figure 2: Nonreciprocal Ser10 phosphorylation hierarchies.
Figure 3: Mutually exclusive phosphorylation of H3 Thr6 (pThr6) and Ser10 by PKCα.
Figure 4: H3 Thr11 phosphorylation impedes Lys14 acetylation by Gcn5.

Similar content being viewed by others

References

  1. Banerjee, T. & Chakravarti, D. A peek into the complex realm of histone phosphorylation. Mol. Cell. Biol. 31, 4858–4873 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baek, S.H. When signaling kinases meet histones and histone modifiers in the nucleus. Mol. Cell 42, 274–284 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Latham, J.A. & Dent, S.Y. Cross-regulation of histone modifications. Nat. Struct. Mol. Biol. 14, 1017–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Davie, J.R. MSK1 and MSK2 mediate mitogen- and stress-induced phosphorylation of histone H3: a controversy resolved. Sci. STKE 2003, PE33 (2003).

    PubMed  Google Scholar 

  6. Wei, Y., Yu, L., Bowen, J., Gorovsky, M.A. & Allis, C.D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97, 99–109 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Metzger, E. et al. Phosphorylation of histone H3T6 by PKCβ(I) controls demethylation at histone H3K4. Nature 464, 792–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Garske, A.L. et al. Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat. Chem. Biol. 6, 283–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Metzger, E. et al. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat. Cell Biol. 10, 53–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Preuss, U., Landsberg, G. & Scheidtmann, K.H. Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res. 31, 878–885 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shimada, M. et al. Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132, 221–232 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Selenko, P. et al. In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat. Struct. Mol. Biol. 15, 321–329 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Hsu, J.Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Lau, P.N. & Cheung, P. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc. Natl. Acad. Sci. USA 108, 2801–2806 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liokatis, S., Dose, A., Schwarzer, D. & Selenko, P. Simultaneous detection of protein phosphorylation and acetylation by high-resolution NMR spectroscopy. J. Am. Chem. Soc. 132, 14704–14705 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905–915 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Lo, W.S. et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol. Cell 5, 917–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Fry, C.J., Shogren-Knaak, M.A. & Peterson, C.L. Histone H3 amino-terminal tail phosphorylation and acetylation: synergistic or independent transcriptional regulatory marks? Cold Spring Harb. Symp. Quant. Biol. 69, 219–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Shogren-Knaak, M.A., Fry, C.J. & Peterson, C.L. A native peptide ligation strategy for deciphering nucleosomal histone modifications. J. Biol. Chem. 278, 15744–15748 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Clements, A. et al. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol. Cell 12, 461–473 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Nowak, S.J. & Corces, V.G. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Soloaga, A. et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J. 22, 2788–2797 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamamoto, Y., Verma, U.N., Prajapati, S., Kwak, Y.T. & Gaynor, R.B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Zippo, A., De Robertis, A., Serafini, R. & Oliviero, S. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat. Cell Biol. 9, 932–944 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Wissmann, M. et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat. Cell Biol. 9, 347–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Ng, S.S. et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448, 87–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Theillet, F.X. et al. Site-specific mapping and time-resolved monitoring of Lysine methylation by high-resolution NMR spectroscopy. J. Am. Chem. Soc. 134, 7616–7619 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Ruthenburg, A.J., Li, H., Patel, D.J. & Allis, C.D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruthenburg, A.J. et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145, 692–706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liokatis, S., Dose, A., Schwarzer, D. & Selenko, P. Simultaneous detection of protein phosphorylation and acetylation by high-resolution NMR spectroscopy. J. Am. Chem. Soc. 132, 14704–14705 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol. Biol. 119, 1–16 (1999).

    CAS  PubMed  Google Scholar 

  34. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Case, D.A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, P. et al. The 1.7 Å crystal structure of human cell cycle checkpoint kinase Chk1: implications for Chk1 regulation. Cell 100, 681–692 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Sessa, F. et al. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol. Cell 18, 379–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Lowe, E.D. et al. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J. 16, 6646–6658 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Schmieder and M. Beerbaum for excellent NMR infrastructure maintenance. A.S. and W.F. acknowledge funding by the Max Planck Gesellschaft (MBG). S.J.E. was supported by a Boehringer Ingelheim Fund (BIF) fellowship. F.-X.T. acknowledges support from the Association pour la Recherche contre le Cancer (ARC). D.S. and P.S. are supported by Emmy Noether research grants (SCHW1163/3-1 and SE1794/1-1) from the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Contributions

S.L. conceived and performed NMR and biochemical experiments, analyzed the data and wrote the paper. A.S. and S.J.E. conceived and performed biochemical experiments. F.-X.T. performed computational modeling. R.K. performed peptide synthesis. B.v.R. performed structural modeling and visualization. D.S., C.D.A. and W.F. conceived biochemical experiments, discussed data and wrote parts of the manuscript. P.S. developed the project, supervised all experiments, analyzed the data, wrote the manuscript and made the figures. All authors discussed ideas and concepts, carefully read the manuscript and approved of the conclusions drawn therein.

Corresponding author

Correspondence to Philipp Selenko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Note. (PDF 16284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liokatis, S., Stützer, A., Elsässer, S. et al. Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Nat Struct Mol Biol 19, 819–823 (2012). https://doi.org/10.1038/nsmb.2310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing