Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray structure of the Yersinia pestis heme transporter HmuUV

Abstract

HmuUV is a bacterial ATP-binding cassette (ABC) transporter that catalyzes heme uptake into the cytoplasm of the Gram-negative pathogen Yersinia pestis. We report the crystal structure of HmuUV at 3.0 Å resolution in a nucleotide-free state, which features a heme translocation pathway in an outward-facing conformation, poised to accept a heme from the cognate periplasmic binding protein HmuT. A new assay allowed us to determine in vitro rates of HmuUV-catalyzed heme transport into proteoliposomes and to establish the role of conserved residues in the translocation pathway of HmuUV and at the interface with HmuT. Differences in architecture relative to the related vitamin B12 transporter BtuCD suggest an adaptation of HmuUV for its smaller substrate. Our study also suggests that type II ABC importers, which include bacterial iron-siderophore, heme and cobalamin transporters, have a coupling mechanism distinct from that of other ABC transporters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro heme transport assay.
Figure 2: Structure of Y. pestis HmuUV in ribbon representation.
Figure 3: Conformation of the TMDs and sequence conservation in the gating helices.
Figure 4: Sequence conservation in the gating helices.
Figure 5: Function of conserved residues in the gating helices.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Wandersman, C. & Delepelaire, P. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58, 611–647 (2004).

    Article  CAS  Google Scholar 

  2. Braun, V. & Hantke, K. Recent insights into iron import by bacteria. Curr. Opin. Chem. Biol. 15, 328–334 (2011).

    Article  CAS  Google Scholar 

  3. Wilks, A. & Burkhard, K.A. Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Nat. Prod. Rep. 24, 511–522 (2007).

    Article  CAS  Google Scholar 

  4. Carniel, E. The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect. 3, 561–569 (2001).

    Article  CAS  Google Scholar 

  5. Collins, H.L. The role of iron in infections with intracellular bacteria. Immunol. Lett. 85, 193–195 (2003).

    Article  CAS  Google Scholar 

  6. Brickman, T.J., Anderson, M.T. & Armstrong, S.K. Bordetella iron transport and virulence. Biometals 20, 303–322 (2007).

    Article  CAS  Google Scholar 

  7. Krieg, S. et al. Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proc. Natl. Acad. Sci. USA 106, 1045–1050 (2009).

    Article  CAS  Google Scholar 

  8. Noinaj, N. et al. Structural basis for iron piracy by pathogenic Neisseria. Nature 483, 53–58 (2012).

    Article  CAS  Google Scholar 

  9. Thompson, J.M., Jones, H.A. & Perry, R.D. Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization. Infect. Immun. 67, 3879–3892 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mattle, D., Zeltina, A., Woo, J.S., Goetz, B.A. & Locher, K.P. Two stacked heme molecules in the binding pocket of the periplasmic heme-binding protein HmuT from Yersinia pestis. J. Mol. Biol. 404, 220–231 (2010).

    Article  CAS  Google Scholar 

  11. Masuda, T. & Takahashi, S. Chemiluminescent-based method for heme determination by reconstitution with horseradish peroxidase apo-enzyme. Anal. Biochem. 355, 307–309 (2006).

    Article  CAS  Google Scholar 

  12. Takahashi, S. & Masuda, T. High throughput heme assay by detection of chemiluminescence of reconstituted horseradish peroxidase. Comb. Chem. High Throughput Screen 12, 532–535 (2009).

    Article  CAS  Google Scholar 

  13. Burkhard, K.A. & Wilks, A. Functional characterization of the Shigella dysenteriae heme ABC transporter. Biochemistry 47, 7977–7979 (2008).

    Article  CAS  Google Scholar 

  14. Borths, E.L., Poolman, B., Hvorup, R.N., Locher, K.P. & Rees, D.C. In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B12 uptake. Biochemistry 44, 16301–16309 (2005).

    Article  CAS  Google Scholar 

  15. Krewulak, K.D. & Vogel, H.J. Structural biology of bacterial iron uptake. Biochim. Biophys. Acta 1778, 1781–1804 (2008).

    Article  CAS  Google Scholar 

  16. Locher, K.P., Lee, A.T. & Rees, D.C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002).

    Article  CAS  Google Scholar 

  17. Hvorup, R.N. et al. Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317, 1387–1390 (2007).

    Article  CAS  Google Scholar 

  18. Hollenstein, K., Dawson, R.J. & Locher, K.P. Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol. 17, 412–418 (2007).

    Article  CAS  Google Scholar 

  19. Lewinson, O., Lee, A.T., Locher, K.P. & Rees, D.C. A distinct mechanism for the ABC transporter BtuCD-BtuF revealed by the dynamics of complex formation. Nat. Struct. Mol. Biol. 17, 332–338 (2010).

    Article  CAS  Google Scholar 

  20. Pinkett, H.W., Lee, A.T., Lum, P., Locher, K.P. & Rees, D.C. An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 315, 373–377 (2007).

    Article  CAS  Google Scholar 

  21. Van Bibber, M., Bradbeer, C., Clark, N. & Roth, J.R. A new class of cobalamin transport mutants (btuF) provides genetic evidence for a periplasmic binding protein in Salmonella typhimurium. J. Bacteriol. 181, 5539–5541 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cuiv, P.O., Keogh, D., Clarke, P. & O′Connell, M. The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B. Mol. Microbiol. 70, 1261–1273 (2008).

    Article  CAS  Google Scholar 

  23. Patzlaff, J.S., van der Heide, T. & Poolman, B. The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278, 29546–29551 (2003).

    Article  CAS  Google Scholar 

  24. Ernst, R. et al. A mutation of the H-loop selectively affects rhodamine transport by the yeast multidrug ABC transporter Pdr5. Proc. Natl. Acad. Sci. USA 105, 5069–5074 (2008).

    Article  CAS  Google Scholar 

  25. Oldham, M.L., Khare, D., Quiocho, F.A., Davidson, A.L. & Chen, J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521 (2007).

    Article  CAS  Google Scholar 

  26. Dawson, R.J. & Locher, K.P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006).

    Article  CAS  Google Scholar 

  27. Oldham, M.L. & Chen, J. Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332, 1202–1205 (2011).

    Article  CAS  Google Scholar 

  28. Tirado-Lee, L., Lee, A., Rees, D.C. & Pinkett, H.W. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA. Structure 19, 1701–1710 (2011).

    Article  CAS  Google Scholar 

  29. Dawson, R.J., Hollenstein, K. & Locher, K.P. Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol. Microbiol. 65, 250–257 (2007).

    Article  CAS  Google Scholar 

  30. Goetz, B.A., Perozo, E. & Locher, K.P. Distinct gate conformations of the ABC transporter BtuCD revealed by electron spin resonance spectroscopy and chemical cross-linking. FEBS Lett. 583, 266–270 (2009).

    Article  CAS  Google Scholar 

  31. Joseph, B., Jeschke, G., Goetz, B.A., Locher, K.P. & Bordignon, E. Transmembrane gate movements in the type II ATP-binding cassette (ABC) importer BtuCD-F during nucleotide cycle. J. Biol. Chem. 286, 41008–41017 (2011).

    Article  CAS  Google Scholar 

  32. Schagger, H. Tricine-SDS-PAGE. Nat. Protoc. 1, 16–22 (2006).

    Article  Google Scholar 

  33. Diederichs, K. & Karplus, P.A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 4, 269–275 (1997).

    Article  CAS  Google Scholar 

  34. Geertsma, E.R., Nik Mahmood, N.A., Schuurman-Wolters, G.K. & Poolman, B. Membrane reconstitution of ABC transporters and assays of translocator function. Nat. Protoc. 3, 256–266 (2008).

    Article  CAS  Google Scholar 

  35. Chifflet, S., Torriglia, A., Chiesa, R. & Tolosa, S. A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. Anal. Biochem. 168, 1–4 (1988).

    Article  CAS  Google Scholar 

  36. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  37. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 8060–8065 (2006).

    Article  CAS  Google Scholar 

  38. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  39. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    Article  CAS  Google Scholar 

  40. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F-1 ATPase. Acta Crystallogr. D Biol. Crystallogr. 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  41. Collaborative Computational Project, Number 4. The Ccp4 suite—programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  42. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  43. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  44. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the beamline staff at the Swiss Light Source for assistance with data collection, R.D. Perry (University of Kentucky, Lexington) for providing the DNA encoding the Y. pestis HmuUV–T system. This research was supported by the National Center for Competence in Research Structural Biology Zurich and the Swiss National Science Foundation (grant SNF 31003A-131075/1 to K.P.L.).

Author information

Authors and Affiliations

Authors

Contributions

B.A.G. performed protein purification and crystallization, K.P.L. determined the crystal structure and built the initial model, J.-S.W. performed structure refinement and bioinformatics analysis, A.Z. performed functional analysis, J.-S.W., A.Z. and K.P.L. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Kaspar P Locher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Note (PDF 5270 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, JS., Zeltina, A., Goetz, B. et al. X-ray structure of the Yersinia pestis heme transporter HmuUV. Nat Struct Mol Biol 19, 1310–1315 (2012). https://doi.org/10.1038/nsmb.2417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing