Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex

Abstract

The exon junction complex (EJC) is a central effector of the fate of mRNAs, linking nuclear processing to mRNA transport, translation and surveillance. However, little is known about its transcriptome-wide targets. We used cross-linking and immunoprecipitation methods coupled to high-throughput sequencing (CLIP-seq) in human cells to identify the binding sites of the DEAD-box helicase eIF4AIII, an EJC core component. CLIP reads form peaks that are located mainly in spliced mRNAs. Most expressed exons harbor peaks either in the canonical EJC region, located ~24 nucleotides upstream of exonic junctions, or in other noncanonical regions. Notably, both of these types of peaks are preferentially associated with unstructured and purine-rich sequences containing the motif GAAGA, which is a potential binding site for EJC-associated factors. Therefore, EJC positions vary spatially and quantitatively between exons. This transcriptome-wide mapping of human eIF4AIII reveals unanticipated aspects of the EJC and broadens its potential impact on post-transcriptional regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CLIP-seq of eIF4AIII in human cells.
Figure 2: eIF4AIII is associated mainly with exons of mRNAs.
Figure 3: eIF4AIII binds the canonical EJC position and noncanonical exonic regions.
Figure 4: eIF4AIII marks specific exonic junctions in vivo.
Figure 5: Several sequence features influence eIF4AIII exonic binding in humans.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Moore, M.J. & Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tange, T.Ø., Nott, A. & Moore, M.J. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol. 16, 279–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Le Hir, H. & Andersen, G.R. Structural insights into the exon junction complex. Curr. Opin. Struct. Biol. 18, 112–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Andersen, C.B. et al. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313, 1968–1972 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Bono, F., Ebert, J., Lorentzen, E. & Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126, 713–725 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Nielsen, K.H. et al. Mechanism of ATP turnover inhibition in the EJC. RNA 15, 67–75 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gehring, N.H., Lamprinaki, S., Hentze, M.W. & Kulozik, A.E. The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay. PLoS Biol. 7, e1000120 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Merz, C., Urlaub, H., Will, C.L. & Luhrmann, R. Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA 13, 116–128 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reichert, V.L., Le Hir, H., Jurica, M.S. & Moore, M.J. 5′ exon interactions within the human spliceosome establish a framework for exon junction complex structure and assembly. Genes Dev. 16, 2778–2791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, Z. & Krainer, A.R. Splicing remodels messenger ribonucleoprotein architecture via eIF4A3-dependent and -independent recruitment of exon junction complex components. Proc. Natl. Acad. Sci. USA 104, 11574–11579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barbosa, I. et al. Human CWC22 escorts the helicase eIF4AIII to spliceosomes and promotes exon junction complex assembly. Nat. Struct. Mol. Biol. 19, 983–990 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Gehring, N.H., Lamprinaki, S., Kulozik, A.E. & Hentze, M.W. Disassembly of exon junction complexes by PYM. Cell 137, 536–548 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Hwang, J. & Maquat, L.E. Nonsense-mediated mRNA decay (NMD) in animal embryogenesis: to die or not to die, that is the question. Curr. Opin. Genet. Dev. 21, 422–430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rebbapragada, I. & Lykke-Andersen, J. Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr. Opin. Cell Biol. 21, 394–402 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Isken, O. & Maquat, L.E. The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat. Rev. Genet. 9, 699–712 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saulière, J. et al. The exon junction complex differentially marks spliced junctions. Nat. Struct. Mol. Biol. 17, 1269–1271 (2010).

    Article  PubMed  Google Scholar 

  19. Ashton-Beaucage, D. et al. The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 143, 251–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Michelle, L. et al. Proteins associated with the exon junction complex also control the alternative splicing of apoptotic regulators. Mol. Cell. Biol. 32, 954–967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roignant, J.Y. & Treisman, J.E. Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene. Cell 143, 238–250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hachet, O. & Ephrussi, A. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 428, 959–963 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Haremaki, T., Sridharan, J., Dvora, S. & Weinstein, D.C. Regulation of vertebrate embryogenesis by the exon junction complex core component Eif4a3. Dev. Dyn. 239, 1977–1987 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Silver, D.L. et al. The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nat. Neurosci. 13, 551–558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Albers, C.A. et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat. Genet. 44, 435–439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Darnell, R.B. HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev. RNA 1, 266–286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ule, J., Jensen, K., Mele, A. & Darnell, R.B. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37, 376–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, C. & Darnell, R.B. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol. 29, 607–614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fejes, A.P. et al. FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics 24, 1729–1730 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patel, A.A. & Steitz, J.A. Splicing double: insights from the second spliceosome. Nat. Rev. Mol. Cell Biol. 4, 960–970 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Hirose, T., Shu, M.D. & Steitz, J.A. Splicing of U12-type introns deposits an exon junction complex competent to induce nonsense-mediated mRNA decay. Proc. Natl. Acad. Sci. USA 101, 17976–17981 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dennis, G. Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, 3 (2003).

    Article  Google Scholar 

  37. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  38. Sanford, J.R. et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 19, 381–394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bailey, T.L., Boden, M., Whitington, T. & Machanick, P. The value of position-specific priors in motif discovery using MEME. BMC Bioinformatics 11, 179 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Long, J.C. & Caceres, J.F. The SR protein family of splicing factors: master regulators of gene expression. Biochem. J. 417, 15–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Markham, N.R. & Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 33, W577–W581 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Markham, N.R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Mishler, D.M., Christ, A.B. & Steitz, J.A. Flexibility in the site of exon junction complex deposition revealed by functional group and RNA secondary structure alterations in the splicing substrate. RNA 14, 2657–2670 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Budiman, M.E. et al. Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation. Mol. Cell 35, 479–489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Le Hir, H. & Seraphin, B. EJCs at the heart of translational control. Cell 133, 213–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Bühler, M., Paillusson, A. & Muhlemann, O. Efficient downregulation of immunoglobulin mu mRNA with premature translation-termination codons requires the 5′-half of the VDJ exon. Nucleic Acids Res. 32, 3304–3315 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carter, M.S., Li, S. & Wilkinson, M.F. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J. 15, 5965–5975 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holbrook, J.A., Neu-Yilik, G., Hentze, M.W. & Kulozik, A.E. Nonsense-mediated decay approaches the clinic. Nat. Genet. 36, 801–808 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Viegas, M.H., Gehring, N.H., Breit, S., Hentze, M.W. & Kulozik, A.E. The abundance of RNPS1, a protein component of the exon junction complex, can determine the variability in efficiency of the nonsense mediated decay pathway. Nucleic Acids Res. 35, 4542–4551 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zetoune, A.B. et al. Comparison of nonsense-mediated mRNA decay efficiency in various murine tissues. BMC Genet. 9, 83 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Z. & Krainer, A.R. Involvement of SR proteins in mRNA surveillance. Mol. Cell 16, 597–607 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Daguenet, E. et al. Perispeckles are major assembly sites for the exon junction core complex. Mol. Biol. Cell 23, 1765–1782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Tomasetto and J. Stévenin (Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France) and J. Marie (Centre de Génétique Moléculaire, Gif-sur-Yvette, France) and E. Izaurralde (Max Planck Institute, Tübingen, Germany) for antibodies, C. Thermes and E. van Dijk (Centre de Génétique Moléculaire, Gif-sur-Yvette, France) at the IMAGIF platform for Illumina deep sequencing and J. Ule (Medical Research Council Laboratory of Molecular Biology, Cambridge, UK) for technical advice. We acknowledge our laboratory for helpful advice, comments and discussions and A. Morillon (Institut Curie, Paris, France) for carefully reading the manuscript. We also thank M. Gratigny and A. Louis (Institut de Biologie de l'Ecole Normale Supérieure, Paris, France) for bioinformatic advice. This work was supported in part by the Centre National de la Recherche Scientifique (ATIP programme blanc 2008 to H.L.H. and ANR-07-JCJC-0097-01 to L.P.), the Institut National de la Santé et de la Recherche Médicale (INSERM; J.S.), the Agence Nationale de la Recherche (2008-BLAN-0323 to H.L.H.) and the Fondation pour la Recherche Médicale (J.S. and H.L.H.). Z.W. is supported by a European Molecular Biology Organization long-term postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

O.L.T., Y.A., L.P. and J.S. contributed to the development of the CLIP protocol. J.S. performed CLIP experiments. V.M. and H.R.C. performed the bioinformatic analyses. Z.W. performed RIP experiments. E.M. performed protein coimmunoprecitation assays. I.B. purified the antibodies. J.S. and H.L.H. conceived the project. H.L.H. provided resources. J.S. and H.L.H. wrote the paper.

Corresponding author

Correspondence to Hervé Le Hir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Note (PDF 1709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saulière, J., Murigneux, V., Wang, Z. et al. CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat Struct Mol Biol 19, 1124–1131 (2012). https://doi.org/10.1038/nsmb.2420

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2420

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing