Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex–dependent and –independent autophagy

This article has been updated

Abstract

Autophagy is a finely orchestrated cellular catabolic process that requires multiple autophagy-related gene products (ATG proteins). The ULK1 complex functions to integrate upstream signals to downstream ATG proteins through an unknown mechanism. Here we have identified an interaction between mammalian FIP200 and ATG16L1, essential components of the ULK1 and ATG5 complexes, respectively. Further analyses show this is a direct interaction mediated by a short domain of ATG16L1 that we term the FIP200-binding domain (FBD). The FBD is not required for ATG16L1 self-dimerization or interaction with ATG5. Notably, an FBD-deleted ATG16L1 mutant is defective in mediating amino acid starvation–induced autophagy, which requires the ULK1 complex. However, this mutant retains its function in supporting glucose deprivation–induced autophagy, a ULK1 complex–independent process. This study therefore identifies a previously uncharacterized interaction between the ULK1 and ATG5 complexes that can distinguish ULK1-dependent and -independent autophagy processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATG16L1 stably localizes to membrane compartments in Atg3−/− cells.
Figure 2: Identification of FIP200 as a binding partner of ATG16L1.
Figure 3: Interaction between ATG16L1 and FIP200 is direct.
Figure 4: Amino acid residues 229–242 of ATG16L1 are required for its interaction with FIP200.
Figure 5: The FIP200 binding–deficient mutant of ATG16L1 is defective in amino acid starvation–induced autophagy.
Figure 6: ATG16L1ΔFBD mutant retains full activity during ULK1 complex–independent, glucose starvation–induced autophagy.

Similar content being viewed by others

Change history

  • 13 January 2013

    In the version of this article initially published online, grant number RO1CA166413 was not acknowledged. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6, 79–87 (2005).

    Article  CAS  Google Scholar 

  2. Wirawan, E., Vanden Berghe, T., Lippens, S., Agostinis, P. & Vandenabeele, P. Autophagy: for better or for worse. Cell Res. 22, 43–61 (2012).

    Article  CAS  Google Scholar 

  3. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  Google Scholar 

  4. Geng, J. & Klionsky, D.J. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 859–864 (2008).

    Article  CAS  Google Scholar 

  5. Bjørkøy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article  Google Scholar 

  6. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  Google Scholar 

  7. Kraft, C., Peter, M. & Hofmann, K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol. 12, 836–841 (2010).

    Article  CAS  Google Scholar 

  8. Nemoto, T. et al. The mouse APG10 homologue, an E2-like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification. J. Biol. Chem. 278, 39517–39526 (2003).

    Article  CAS  Google Scholar 

  9. Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).

    Article  CAS  Google Scholar 

  10. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  Google Scholar 

  11. Mizushima, N. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152, 657–668 (2001).

    Article  CAS  Google Scholar 

  12. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  Google Scholar 

  13. Sou, Y.S. et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol. Biol. Cell 19, 4762–4775 (2008).

    Article  CAS  Google Scholar 

  14. Florey, O., Kim, S.E., Sandoval, C.P., Haynes, C.M. & Overholtzer, M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat. Cell Biol. 13, 1335–1343 (2011).

    Article  CAS  Google Scholar 

  15. Martinez, J. et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. USA 108, 17396–17401 (2011).

    Article  CAS  Google Scholar 

  16. Florey, O. & Overholtzer, M. Autophagy proteins in macroendocytic engulfment. Trends Cell Biol. 22, 374–380 (2012).

    Article  CAS  Google Scholar 

  17. Itakura, E., Kishi, C., Inoue, K. & Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19, 5360–5372 (2008).

    Article  CAS  Google Scholar 

  18. Zhong, Y. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11, 468–476 (2009).

    Article  CAS  Google Scholar 

  19. Ganley, I.G. et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297–12305 (2009).

    Article  CAS  Google Scholar 

  20. Jung, C.H. et al. ULK-Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).

    Article  CAS  Google Scholar 

  21. Itakura, E. & Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764–776 (2010).

    Article  CAS  Google Scholar 

  22. Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497–510 (2008).

    Article  CAS  Google Scholar 

  23. Mizushima, N. et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J. Cell Sci. 116, 1679–1688 (2003).

    Article  CAS  Google Scholar 

  24. Fujioka, Y., Noda, N.N., Nakatogawa, H., Ohsumi, Y. & Inagaki, F. Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J. Biol. Chem. 285, 1508–1515 (2010).

    Article  CAS  Google Scholar 

  25. Matsushita, M. et al. Structure of Atg5Atg16, a complex essential for autophagy. J. Biol. Chem. 282, 6763–6772 (2007).

    Article  CAS  Google Scholar 

  26. Ishibashi, K. et al. Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12–5-16L2 complex. Autophagy 7, 1500–1513 (2011).

    Article  CAS  Google Scholar 

  27. Cheong, H., Lindsten, T., Wu, J., Lu, C. & Thompson, C.B. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc. Natl. Acad. Sci. USA 108, 11121–11126 (2011).

    Article  CAS  Google Scholar 

  28. Eng, C.H., Yu, K., Lucas, J., White, E. & Abraham, R.T. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 3, ra31 (2010).

    PubMed  Google Scholar 

  29. Shang, L. et al. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. USA 108, 4788–4793 (2011).

    Article  CAS  Google Scholar 

  30. Alers, S. et al. Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction. Autophagy 7, 1423–1433 (2011).

    Article  Google Scholar 

  31. Kundu, M. et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493–1502 (2008).

    Article  CAS  Google Scholar 

  32. Wei, H. et al. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 25, 1510–1527 (2011).

    Article  CAS  Google Scholar 

  33. Fujita, N. et al. Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts. J. Biol. Chem. 284, 32602–32609 (2009).

    Article  CAS  Google Scholar 

  34. Rioux, J.D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  Google Scholar 

  35. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    Article  CAS  Google Scholar 

  36. Hanada, T. et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298–37302 (2007).

    Article  CAS  Google Scholar 

  37. Gao, Z. et al. Processing of autophagic protein LC3 by the 20S proteasome. Autophagy 6, 126–137 (2010).

    Article  CAS  Google Scholar 

  38. Shao, Y., Gao, Z., Feldman, T. & Jiang, X. Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy 3, 10–16 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Akira (Osaka University) for Atg16l1−/− MEFs, M. Komatsu (Tokyo Metropolitan Institute of Medical Science) for Atg3−/− MEFs, N. Mizushima (Tokyo Medical and Dental University) for Atg5−/− MEFs, C. Thompson (Memorial Sloan Kettering Cancer Center, MSKCC) for ULK1 and ULK2 double-knockout MEFs, F. Giancotti (MSKCC) for β-integrin–specific antibody and H. Erdjument-Bromage (MSKCC) for mass spectrometric analyses. We thank members of the X.J. laboratory for critical reading of the manuscript and discussion. This work was supported in part by US National Institutes of Health (NIH) grants U54CA137788, R01CA113890 and R01CA166413 (to X.J.); US National Cancer Institute grant R01CA154649, the Benjamin Friedman Research Fund and the Louis V. Gerstner, Jr. Young Investigators Fund (to M.O.); and NIH fellowship 1F32CA162691 (to N.G.).

Author information

Authors and Affiliations

Authors

Contributions

N.G. and X.J. designed the study and wrote the paper; N.G. and O.F. performed the experiments; N.G., O.F., M.O. and X.J. analyzed the data.

Corresponding author

Correspondence to Xuejun Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 3717 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gammoh, N., Florey, O., Overholtzer, M. et al. Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex–dependent and –independent autophagy. Nat Struct Mol Biol 20, 144–149 (2013). https://doi.org/10.1038/nsmb.2475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing