Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for activity of highly efficient RNA mimics of green fluorescent protein

Abstract

GFP and its derivatives revolutionized the study of proteins. Spinach is a recently reported in vitro–evolved RNA mimic of GFP, which as genetically encoded fusions makes possible live-cell, real-time imaging of biological RNAs without resorting to large RNA-binding protein–GFP fusions. To elucidate the molecular basis of Spinach fluorescence, we solved the cocrystal structure of Spinach bound to its cognate exogenous chromophore, showing that Spinach activates the small molecule by immobilizing it between a base triple, a G-quadruplex and an unpaired G. Mutational and NMR analyses indicate that the G-quadruplex is essential for Spinach fluorescence, is also present in other fluorogenic RNAs and may represent a general strategy for RNAs to induce fluorescence of chromophores. The structure guided the design of a miniaturized 'Baby Spinach', and it provides a foundation for structure-driven design and tuning of fluorescent RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Spinach–DFHBI complex.
Figure 2: The Spinach chromophore-binding site contains a G-quadruplex.
Figure 3: Comparison of GFP and Spinach.
Figure 4: G-quadruplexes in Spinach and other fluorogenic RNAs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  2. Day, R.N. & Davidson, M.W. (eds.) The Fluorescent Protein Revolution (CRC Press, Boca Raton, Florida, USA, 2014).

    Book  Google Scholar 

  3. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. & Prasher, D. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  4. Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  Google Scholar 

  5. Yang, F., Moss, L.G. & Phillips, G.N. The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  Google Scholar 

  6. Paige, J.S., Wu, K.Y. & Jaffrey, S.R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Article  CAS  Google Scholar 

  7. Shimomura, O. Structure of the chromophore of Aequorea green fluorescent protein. FEBS Lett. 104, 220–222 (1979).

    Article  CAS  Google Scholar 

  8. Strack, R.L., Disney, M.D. & Jaffrey, S.R. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat–containing RNA. Nat. Methods 10, 1219–1224 (2013).

    Article  CAS  Google Scholar 

  9. Babendure, J.R., Adams, S.R. & Tsien, R.Y. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 125, 14716–14717 (2003).

    Article  CAS  Google Scholar 

  10. Constantin, T.P. et al. Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules. Org. Lett. 10, 1561–1564 (2008).

    Article  CAS  Google Scholar 

  11. Pothoulakis, G., Ceroni, F., Reeve, B. & Ellis, T. The Spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth. Biol. 3, 182–187 (2014).

    Article  CAS  Google Scholar 

  12. Strack, R.L., Song, W. & Jaffrey, S.R. Using Spinach-based sensors for fluorescence imaging of intracellular metabolites and proteins in living bacteria. Nat. Protoc. 9, 146–155 (2014).

    Article  CAS  Google Scholar 

  13. Strack, R.L. & Jaffrey, S.R. New approaches for sensing metabolites and proteins in live cells using RNA. Curr. Opin. Chem. Biol. 17, 651–655 (2013).

    Article  CAS  Google Scholar 

  14. Paige, J.S., Nguyen-Duc, T., Song, W. & Jaffrey, S.R. Fluorescence imaging of cellular metabolites with RNA. Science 335, 1194 (2012).

    Article  CAS  Google Scholar 

  15. Kellenberger, C.A., Wilson, S.C., Sales-Lee, J. & Hammond, M.C. RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and dyclic AMP-GMP. J. Am. Chem. Soc. 135, 4906–4909 (2013).

    Article  CAS  Google Scholar 

  16. Nakayama, S., Luo, Y., Zhou, J., Dayie, T.K. & Sintim, H.O. Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy. Chem. Commun. (Camb.) 48, 9059–9061 (2012).

    Article  CAS  Google Scholar 

  17. Huang, H. et al. A G-quadruplex–containing RNA activates fluorescence in a GFP-like fluorophore. Nat. Chem. Biol. doi:10.1038/nchembio.1561 (22 June 2014)

    Article  CAS  Google Scholar 

  18. Neidle, S. & Balasubramanian, S. (eds.) Quadruplex Nucleic Acids (RSC Publishing, Cambridge, 2006).

    Book  Google Scholar 

  19. Gellert, M., Lipsett, M.N. & Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA 48, 2013–2018 (1962).

    Article  CAS  Google Scholar 

  20. Paul, B.K. & Guchhait, N. Looking at the green fluorescent protein (GFP) chromophore from a different perspective: a computational insight. Spectrochim. Acta A Mol. Biomol. Spectrosc. 103, 295–303 (2013).

    Article  CAS  Google Scholar 

  21. Auffinger, P., Bielecki, L. & Westhof, E. Anion binding to nucleic acids. Structure 12, 379–388 (2004).

    Article  CAS  Google Scholar 

  22. Draper, D.E. A guide to ions and RNA structure. RNA 10, 335–343 (2004).

    Article  CAS  Google Scholar 

  23. Song, W., Strack, R.L., Svensen, N. & Jaffrey, S.R. Plug-and-play fluorophores extend the spectral properties of spinach. J. Am. Chem. Soc. 136, 1198–1201 (2014).

    Article  CAS  Google Scholar 

  24. Guédin, A., Gros, J., Alberti, P. & Mergny, J.L. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 38, 7858–7868 (2010).

    Article  Google Scholar 

  25. Hud, N.V. (ed.) Nucleic Acid-Metal Ion Interactions (RSC Publishing, Cambridge, 2009).

    Google Scholar 

  26. Collie, G.W., Haider, S.M., Neidle, S. & Parkinson, G.N. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res. 38, 5569–5580 (2010).

    Article  CAS  Google Scholar 

  27. Wang, P.C. et al. Photochemical properties of Spinach and its use in selective imaging. Chem. Sci. 4, 2865–2873 (2013).

    Article  CAS  Google Scholar 

  28. Han, K.Y., Leslie, B.J., Fei, J.Y., Zhang, J.C. & Ha, T. Understanding the photophysics of the Spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. J. Am. Chem. Soc. 135, 19033–19038 (2013).

    Article  CAS  Google Scholar 

  29. Phan, A.T. et al. Strucuture-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat. Struct. Mol. Biol. 18, 796–804 (2011).

    Article  CAS  Google Scholar 

  30. Remington, S.J. Green fluorescent protein: a perspective. Protein Sci. 20, 1509–1519 (2011).

    Article  CAS  Google Scholar 

  31. Smith, F.W. & Feigon, J. Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature 356, 164–168 (1992).

    Article  CAS  Google Scholar 

  32. Batey, R.T., Gilbert, S.D. & Montange, R.K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004).

    Article  CAS  Google Scholar 

  33. Montange, R.K. & Batey, R.T. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175 (2006).

    Article  CAS  Google Scholar 

  34. Serganov, A., Huang, L. & Patel, D.J. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 455, 1263–1267 (2008).

    Article  CAS  Google Scholar 

  35. Klein, D.J., Edwards, T.E. & Ferré-D'Amaré, A.R. Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat. Struct. Mol. Biol. 16, 343–344 (2009).

    Article  CAS  Google Scholar 

  36. Flinders, J. et al. Recognition of planar and nonplanar ligands in the malachite green-RNA aptamer complex. ChemBioChem 5, 62–72 (2004).

    Article  CAS  Google Scholar 

  37. Huppert, J.L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005).

    Article  CAS  Google Scholar 

  38. Sigel, A., Sigel, H. & Sigel, R.K.O. (eds.) Structural and Catalytic Roles of Metal Ions in RNA (RSC Publishing, Cambridge, 2011).

    Book  Google Scholar 

  39. Leontis, N.B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).

    Article  CAS  Google Scholar 

  40. Arpino, J.A., Rizkallah, P.J. & Jones, D.D. Crystal structure of enhanced green fluorescent protein to 1.35 Å resolution reveals alternative conformations for Glu222. PLoS ONE 7, e47132 (2012).

    Article  CAS  Google Scholar 

  41. Rogers, T.A., Andrews, G.E., Jaeger, L. & Grabow, W.W. Fluorescent monitoring of RNA assembly and processing using the split-Spinach aptamer. ACS Synth. Biol. doi:10.1021/sb5000725 (29 April 2014).

  42. Song, W., Strack, R.L. & Jaffrey, S.R. Imaging bacterial protein expression using genetically encoded RNA sensors. Nat. Methods 10, 873–875 (2013).

    Article  CAS  Google Scholar 

  43. Xiao, H., Edwards, T.E. & Ferré-D'Amaré, A.R. Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chem. Biol. 15, 1125–1137 (2008).

    Article  CAS  Google Scholar 

  44. Otwinowski, Z. & Minor, W. Processing of diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  45. Leslie, A.G.W. & Powell, H.R. in Evolving Methods for Macromolecular Crystallography 41–51 (Springer, Dordrecht, The Netherlands, 2007).

    Book  Google Scholar 

  46. Battye, T.G.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G.W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  Google Scholar 

  47. Evans, P.R. & Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  Google Scholar 

  48. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  Google Scholar 

  49. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  50. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  51. Sheldrick, G.M. et al. in International Tables for Crystallography, Vol. F (eds. Arnold, E., Himmel, D.M. & Rossmann, M.G.) 413–432 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2011).

    Google Scholar 

  52. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  53. Brünger, A.T. et al. Crystallography and NMR system: a new software system for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  54. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  55. Chou, F.C., Sripakdeevong, P., Dibrov, S.M., Hermann, T. & Das, R. Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat. Methods 10, 74–76 (2013).

    Article  CAS  Google Scholar 

  56. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  57. Afonine, P.V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  Google Scholar 

  58. Ho, B.K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008).

    Article  Google Scholar 

  59. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. & Svergun, D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003).

    Article  CAS  Google Scholar 

  60. Svergun, D.I., Bargerato, C. & Koch, M.H.J. CRYSOL: a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at beamlines 5.0.2 of the Advanced Light Source (ALS), 24-ID-C of the Advanced Photon Source (APS) and 11-1 of the Stanford Synchrotron Radiation Lightsource (SSRL) for crystallographic data collection; G. Piszczek (US National Heart, Lung and Blood Institute, NHLBI) for fluorescence spectroscopy; X. Fang (US National Cancer Institute) and the staff of APS 12-ID-C for SAXS; D.-Y. Lee (NHLBI) for MS; X. Wu (NHLBI) for fluorescence microscopy; N. Tjandra for NMR; J. Grimmett and T. Darling for MRC Laboratory of Molecular Biology computer-cluster support; and N. Baird, P. Emsley, C. Jones, F. Long, G. Murshudov, R. Nicholls, K. Perry, M. Lau, A. Roll-Mecak, M. Warner, K. Weeks and J. Zhang for discussions. This work was partly conducted at the ALS on the Berkeley Center for Structural Biology beamlines, at the APS on the 24-ID-C (NE-CAT) and 12-ID-C beamlines and at SSRL, which are all supported by the US National Institutes of Health (NIH, GM103403 and GM103393 to APS and SSRL, respectively). Use of ALS, APS and SSRL was supported by the US Department of Energy. This work was supported in part by the NIH (R01 NS010249 to S.R.J. and F32 GM106683 to R.L.S.), the European Union FP7 Marie-Curie IEF program (A.T.), the NIH-Oxford-Cambridge Research Scholars Program (K.D.W. and M.C.C.) and the intramural program of the NHLBI, NIH.

Author information

Authors and Affiliations

Authors

Contributions

K.D.W. and A.R.F.-D. designed experiments; W.S., R.L.S. and S.R.J. synthesized chromophores and some aptamers; K.D.W. carried out biochemistry, crystallization and SAXS; K.D.W. and A.R.F.-D. collected diffraction data; K.D.W., A.T. and A.R.F.-D. reduced data; A.T. solved the heavy atom substructure and calculated initial phases; K.D.W. built the crystallographic model, and K.D.W. and A.T. refined it; M.C.C. performed NMR; and A.R.F.-D. and K.D.W. wrote the manuscript with help from M.C.C., A.T. and S.R.J., and all authors reviewed it.

Corresponding author

Correspondence to Adrian R Ferré-D'Amaré.

Ethics declarations

Competing interests

S.R.J. and R.L.S. are authors of a patent application (provisional patent USPTO no. 61/874,819) related to RNA–fluorophore complexes described in this paper. The other authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Crystallographic and SAXS characterization of Spinach.

(a) Comparison of the fluorescence spectra of unimolecular and split (crystallization) Spinach1.2 RNA constructs (Supplementary Table 2) bound to DFHBI. (b) Portion of the density-modified SAD electron density map corresponding to the two G-quartets contoured at 1 s.d. (gray mesh). Green mesh depicts the anomalous difference Fourier synthesis contoured at 4 s.d. Both maps calculated with Crystal I data (Table 1). (c) Portion of the anomalous difference Fourier synthesis (magenta mesh) calculated with data from the residue 18 5-iodouridine Split Spinach-DFHBI co-crystal (Crystal III, Table 1) contoured at 4 s.d., superimposed on the final refined model for Crystal I. (d) Portion of the anomalous difference Fourier synthesis (magenta mesh) calculated with data from the DBrHBI co-crystal (Crystal IV, Table 1) contoured at 4 s.d., superimposed on the DFHBI from the molecular replacement model. (e) P(r) functions for free and DFHBI-bound Spinach RNA. (f) Comparison of the scattering profile back-calculated from the model of DFHBI-bound Spinach (Crystal I) and the experimental solution X-ray scattering of DFHBI-bound Spinach RNA (RNA 12, Supplementary Table 2). (g) Kratky analysis of experimental free and DFHBI-bound Spinach RNA SAXS data.

Supplementary Figure 2 Secondary structure of Spinach.

(a) Secondary structure of Spinach previously proposed6 based on computational structure prediction. Nucleotides are colored to match Fig. 1b. Base-pairing interactions not observed in the Spinach-DFHBI co-crystal structure are denoted by dashed red lines. (b) The secondary structure adopted by Spinach in complex with DFHBI is compatible with the Spinach1, Spinach1.2 and Spinach2 sequence variants6,8. Red squares indicate sequence differences from Spinach1.2.

Supplementary Figure 3 Metal-ion interactions with Spinach.

(a) In the Crystal I crystallographic model, the difluorohydroxyphenyl ring of DFHBI is coordinated by four waters as well as K+ (Mc), and the 2′-OH of G26. An additional K+ (MD) and water molecules are also present in the cation-binding site. (b) In the Crystal II crystallographic model, the difluorohydroxyphenyl ring of DFHBI is coordinated by a Mg2+ (Mc) and the 2′-OH of G26. Two ordered water molecules are also present in the cation-binding site. (c) Spinach-bound DFHBI is partially accessible to bulk solvent. Molecular surface of the complex. View of the DFHBI binding site is as in a and Fig. 2b. (d) View is as in Fig. 2a. (e) Histogram of fluorescence of 1 μM of Spinach RNA and 10 μM DFHBI in the presence of various cations, normalized to Spinach fluorescence (RNA 3 and 4, Supplementary Table 2) in the 0.125 M KCl, 5 mM MgCl2 condition. Error bars represent s.e.m. ND, not determined. (f) Fluorescence emission spectra in the presence of various cations, normalized to Spinach fluorescence (RNA 3 and 4) in the 0.125 M KCl, 5 mM MgCl2 condition.

Supplementary Figure 4 The Spinach G-quadruplex tapers gradually to the canonical A-form antiparallel duplex P2.

(a) C1' to C1' distances (measured diagonally for the tetrads) are shown. (b) View as in a, but rotated 180° along the vertical axis.

Supplementary Figure 5 Structural requirements for DFHBI recognition by Spinach.

(a) View of the DFHBI binding site with cis-DFHBI bound, with metal ions and waters removed, from the final refined Crystal I structure. (b) View of the DFHBI bindings site modeled with trans-DFHBI comparison with a. The trans-DFHBI exhibits steric clashes and fewer hydrogen bonds than cis-DFHBI. (c) Alternate orientation of trans-DFHBI modeled for comparison, also showing fewer favorable interactions than a. (d) Hypothetical secondary structure of Baby Spinach. Nucleotides are colored to match Fig. 1b.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1 and 2 (PDF 7136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warner, K., Chen, M., Song, W. et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat Struct Mol Biol 21, 658–663 (2014). https://doi.org/10.1038/nsmb.2865

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2865

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing