Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capturing snapshots of APE1 processing DNA damage

Abstract

DNA apurinic-apyrimidinic (AP) sites are prevalent noncoding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA-repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive, owing in part to limited structural information. We report multiple high-resolution human APE1–DNA structures that divulge new features of the APE1 reaction, including the metal-binding site, the nucleophile and the arginine clamps that mediate product release. We also report APE1–DNA structures with a T-G mismatch 5′ to the AP site, representing a clustered lesion occurring in methylated CpG dinucleotides. These structures reveal that APE1 molds the T-G mismatch into a unique Watson-Crick-like geometry that distorts the active site, thus reducing incision. These snapshots provide mechanistic clarity for APE1 while affording a rational framework to manipulate biological responses to DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-resolution APE1–DNA product complex.
Figure 2: Swinging of R181 facilitates product stability.
Figure 3: R177 intercalates into the major groove anchoring the orphan base.
Figure 4: High resolution APE1–DNA substrate complex.
Figure 5: APE1 E96Q D210N mismatch substrate complex.
Figure 6: APE1 T-G mismatch product complex.
Figure 7: APE1 mechanism during strand cleavage.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Kingma, P.S., Corbett, A.H., Burcham, P.C., Marnett, L.J. & Osheroff, N. Abasic sites stimulate double-stranded DNA cleavage mediated by topoisomerase II: DNA lesions as endogenous topoisomerase II poisons. J. Biol. Chem. 270, 21441–21444 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Cuniasse, P., Fazakerley, G.V., Guschlbauer, W., Kaplan, B.E. & Sowers, L.C. The abasic site as a challenge to DNA polymerase: a nuclear magnetic resonance study of G, C and T opposite a model abasic site. J. Mol. Biol. 213, 303–314 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Loeb, L.A. & Preston, B.D. Mutagenesis by apurinic/apyrimidinic sites. Annu. Rev. Genet. 20, 201–230 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. De Bont, R. & van Larebeke, N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19, 169–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Breen, A.P. & Murphy, J.A. Reactions of oxyl radicals with DNA. Free Radic. Biol. Med. 18, 1033–1077 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Dianov, G.L. & Hübscher, U. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. 41, 3483–3490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, Y.-J. & Wilson, D.M. III. Overview of base excision repair biochemistry. Curr. Mol. Pharmacol. 5, 3–13 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brooks, S.C., Adhikary, S., Rubinson, E.H. & Eichman, B.F. Recent advances in the structural mechanisms of DNA glycosylases. Biochim. Biophys. Acta 1834, 247–271 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, Y. et al. Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase β. J. Biol. Chem. 282, 13532–13541 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Beard, W.A. & Wilson, S.H. Structure and mechanism of DNA polymerase β. Chem. Rev. 106, 361–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Mol, C.D., Izumi, T., Mitra, S. & Tainer, J.A. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination. Nature 403, 451–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Beernink, P.T. et al. Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, ape1: implications for the catalytic mechanism. J. Mol. Biol. 307, 1023–1034 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Oezguen, N. et al. A “moving metal mechanism” for substrate cleavage by the DNA repair endonuclease APE-1. Proteins 68, 313–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Gorman, M.A. et al. The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J. 16, 6548–6558 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mundle, S.T. et al. Novel role of tyrosine in catalysis by human AP endonuclease 1. DNA Repair (Amst.) 3, 1447–1455 (2004).

    Article  CAS  Google Scholar 

  16. Mundle, S.T., Delaney, J.C., Essigmann, J.M. & Strauss, P.R. Enzymatic mechanism of human apurinic/apyrimidinic endonuclease against a THF AP site model substrate. Biochemistry 48, 19–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Oezguen, N. et al. MD simulation and experimental evidence for Mg2+ binding at the B site in human AP endonuclease 1. Bioinformation 7, 184–198 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsutakawa, S.E. et al. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes. J. Biol. Chem. 288, 8445–8455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lipton, A.S. et al. Characterization of Mg2+ binding to the DNA repair protein apurinic/apyrimidic endonuclease 1 via solid-state 25Mg NMR spectroscopy. J. Am. Chem. Soc. 130, 9332–9341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Freudenthal, B.D., Beard, W.A., Shock, D.D. & Wilson, S.H. Observing a DNA polymerase choose right from wrong. Cell 154, 157–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakamura, T., Zhao, Y., Yamagata, Y., Hua, Y.-j. & Yang, W. Watching DNA polymerase η make a phosphodiester bond. Nature 487, 196–201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Molina, R. et al. Visualizing phosphodiester-bond hydrolysis by an endonuclease. Nat. Struct. Mol. Biol. 22, 65–72 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen, L.H., Barsky, D., Erzberger, J.P. & Wilson, D.M. III. Mapping the protein-DNA interface and the metal-binding site of the major human apurinic/apyrimidinic endonuclease1. J. Mol. Biol. 298, 447–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Erzberger, J.P. & Wilson, D.M. III. The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis. J. Mol. Biol. 290, 447–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Maher, R.L. & Bloom, L.B. Pre-steady-state kinetic characterization of the AP endonuclease activity of human AP endonuclease 1. J. Biol. Chem. 282, 30577–30585 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. He, H., Chen, Q. & Georgiadis, M.M. High-resolution crystal structures reveal plasticity in the metal binding site of apurinic/apyrimidinic endonuclease I. Biochemistry 53, 6520–6529 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Izumi, T., Schein, C.H., Oezguen, N., Feng, Y. & Braun, W. Effects of backbone contacts 3′ to the abasic site on the cleavage and the product binding by human apurinic/apyrimidinic endonuclease (APE1). Biochemistry 43, 684–689 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Peddi, S.R., Chattopadhyay, R., Naidu, C.V. & Izumi, T. The human apurinic/apyrimidinic endonuclease-1 suppresses activation of poly(adp-ribose) polymerase-1 induced by DNA single strand breaks. Toxicology 224, 44–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wilson, D.M., Takeshita, M., Grollman, A.P. & Demple, B. Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA. J. Biol. Chem. 270, 16002–16007 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Schermerhorn, K.M. & Delaney, S. Transient-state kinetics of apurinic/apyrimidinic (AP) endonuclease 1 acting on an authentic AP site and commonly used substrate analogs: the effect of diverse metal ions and base mismatches. Biochemistry 52, 7669–7677 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Vanyushin, B.F., Tkacheva, S.G. & Belozersky, A.N. Rare bases in animal DNA. Nature 225, 948–949 (1970).

    Article  CAS  PubMed  Google Scholar 

  32. Antequera, F. & Bird, A. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA 90, 11995–11999 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen, J.-C., Rideout, W.M. & Jones, P.A. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 22, 972–976 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sassa, A., Beard, W.A., Prasad, R. & Wilson, S.H. DNA sequence context effects on the glycosylase activity of human 8-oxoguanine DNA glycosylase. J. Biol. Chem. 287, 36702–36710 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sassa, A., Çağlayan, M., Dyrkheeva, N.S., Beard, W.A. & Wilson, S.H. Base excision repair of tandem modifications in a methylated CpG dinucleotide. J. Biol. Chem. 289, 13996–14008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McNeill, D.R. & Wilson, D.M. III. A dominant-negative form of the major human abasic endonuclease enhances cellular sensitivity to laboratory and clinical DNA-damaging agents. Mol. Cancer Res. 5, 61–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Chohan, M., Mackedenski, S., Li, W. & Lee, C.H. Human apurinic/apyrimidinic endonuclease 1 (APE1) has 3′ RNA phosphatase and 3′ exoribonuclease activities. J. Mol. Biol. 427, 298–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Barnes, T. et al. Identification of Apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA. Nucleic Acids Res. 37, 3946–3958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, D.S., Herman, T. & Demple, B. Two distinct human DNA diesterases that hydrolyze 3′-blocking deoxyribose fragments from oxidized DNA. Nucleic Acids Res. 19, 5907–5914 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gros, L., Ishchenko, A.A., Ide, H., Elder, R.H. & Saparbaev, M.K. The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway. Nucleic Acids Res. 32, 73–81 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thakur, S. et al. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp. Mol. Med. 46, e106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Andres, S.N., Schellenberg, M.J., Wallace, B.D., Tumbale, P. & Williams, R.S. Recognition and repair of chemically heterogeneous structures at DNA ends. Environ. Mol. Mutagen. 56, 1–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Xanthoudakis, S., Smeyne, R.J., Wallace, J.D. & Curran, T. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc. Natl. Acad. Sci. USA 93, 8919–8923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meira, L.B. et al. Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress. Cancer Res. 61, 5552–5557 (2001).

    CAS  PubMed  Google Scholar 

  45. Illuzzi, J.L. et al. Functional assessment of population and tumor-associated APE1 protein variants. PLoS ONE 8, e65922 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abbotts, R. & Madhusudan, S. Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat. Rev. 36, 425–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Kanazhevskaya, L.Y., Koval, V.V., Lomzov, A.A. & Fedorova, O.S. The role of Asn-212 in the catalytic mechanism of human endonuclease APE1: stopped-flow kinetic study of incision activity on a natural AP site and a tetrahydrofuran analogue. DNA Repair (Amst.) 21, 43–54 (2014).

    Article  CAS  Google Scholar 

  48. Schellenberg, M.J. et al. Mechanism of repair of 5′-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2. Nat. Struct. Mol. Biol. 19, 1363–1371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, D. et al. Structural basis for the recognition and cleavage of abasic DNA in Neisseria meningitidis. Proc. Natl. Acad. Sci. USA 109, 16852–16857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Manvilla, B.A., Pozharski, E., Toth, E.A. & Drohat, A.C. Structure of human apurinic/apyrimidinic endonuclease 1 with the essential Mg2+ cofactor. Acta Crystallogr. D Biol. Crystallogr. 69, 2555–2562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Delgado, S., Gómez, M., Bird, A. & Antequera, F. Initiation of DNA replication at CpG islands in mammalian chromosomes. EMBO J. 17, 2426–2435 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kalam, M.A. & Basu, A.K. Mutagenesis of 8-oxoguanine adjacent to an abasic aite in simian kidney cells: tandem mutations and enhancement of G→T transversions. Chem. Res. Toxicol. 18, 1187–1192 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Kimsey, I.J., Petzold, K., Sathyamoorthy, B., Stein, Z.W. & Al-Hashimi, H.M. Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes. Nature 519, 315–320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bebenek, K., Pedersen, L.C. & Kunkel, T.A. Replication infidelity via a mismatch with Watson–Crick geometry. Proc. Natl. Acad. Sci. USA 108, 1862–1867 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, W., Hellinga, H.W. & Beese, L.S. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proc. Natl. Acad. Sci. USA 108, 17644–17648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilson, S.H. & Kunkel, T.A. Passing the baton in base excision repair. Nat. Struct. Biol. 7, 176–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Chesnut, D.B. An electron localization function study of the lone pair. J. Phys. Chem. A 104, 11644–11650 (2000).

    Article  CAS  Google Scholar 

  58. Eustermann, S. et al. The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. J. Mol. Biol. 407, 149–170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Strauss, P.R., Beard, W.A., Patterson, R.A. & Wilson, S.H. Substrate binding by human apurinic/apyrimidinic endonuclease indicates a Briggs-Haldane mechanism. J. Biol. Chem. 272, 1302–1307 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Otwinowski, Z. & Minor, W. Processsing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Adams, P.D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lefurgy, S.T. & Leyh, T.S. Analytical expressions for the homotropic binding of ligand to protein dimers and trimers. Anal. Biochem. 421, 433–438 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Collaborative Crystallography group at NIEHS for help with data collection and analysis. We thank L. Pedersen and L. Perera for valuable discussions. This research was supported in part by the Intramural Research Program of the US National Institutes of Health, National Institute of Environmental Health Sciences (project numbers Z01-ES050158 and Z01-ES050161 (S.H.W.)). A part of this research was performed at Oak Ridge National Laboratory's Spallation Neutron Source and the Joint Institute for Neutron Sciences Biophysical Characterization Laboratory, sponsored by the United States Department of Energy, Office of Basic Energy Sciences (M.J.C.). N.S.D is supported in part by Eli Lilly and Co. and the United States Department of State, as part of the United States-Russia Collaboration in the Biomedical Sciences US National Institutes of Health Visiting Fellows Program.

Author information

Authors and Affiliations

Authors

Contributions

B.D.F. designed the project. B.D.F. carried out crystallography. N.S.D. did the kinetic analyses. M.J.C. did the binding studies. B.D.F., W.A.B. and S.H.W. prepared the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Samuel H Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Overlay of APE1–DNA product complexes.

(a) An overlay of the previous (PDB ID 4IEM) (Tsutakawa, S.E. et al., J. Biol. Chem. 288, 8445-8455, 2013) APE1:DNA product complex and our high-resolution product complex shown in yellow and green, respectively. (b) A focused view on the DNA from the overlay in panel (a). The only major difference in the DNA conformer is indicated with a red arrow. The end of the DNA from the previous structure folds back and stacks with the orphan base pair. This is not observed with longer 21-mers employed in the current study.

Supplementary Figure 2 The chiral 2′-O-methyl phosphorothioate species.

(a) An omit map contoured at 3σ is shown in green. The THF moiety and 5´-flanking 2´O-methyl phosphorothioate (2´-OMe(PS)) are shown in stick format. (b) The Sp and Rp chiral species are shown. The shift of the Rp species is indicated with a black arrow.

Supplementary Figure 3 APE1 substrate complex with metal bound.

(a) Close-up view of the metal binding site in the APE1:DNA substrate complex with Mn2+ shown as a purple sphere. The anomalous density map is shown in purple contoured at 5σ. The coordinating water molecules are shown as blue spheres and side chains in stick format. The cleavage point is indicated (black arrow). (b) Overlay of the metal bound and metal free substrate complex is shown in green and salmon, respectively. The Mn2+ ion is shown as a purple sphere. Shifts (Å) in side chain residues following metal binding are highlighted by a red arrow. (c) Overlay of the metal bound substrate and product complexes are shown in green and yellow, respectively. Mg2+ and Mn2+ are shown as red and purple spheres respectively. The shift (Å) in the metal ion from the substrate to product binding site is indicated by a red arrow.

Supplementary Figure 4 The E96Q D210N APE1 mismatch substrate complex.

(a) An omit map contoured at 3σ is shown for key active site residues and the nucleophilic water. (b) Overlay of the APE1 substrate complex obtained with modified DNA and wild-type enzyme (green) or using natural DNA and the E96Q D210N double mutant (cyan). The nucleophilic water and amino acids D210, N68, and E96 are shown for each structure. The hydrogen bonding interaction for the E96Q D210N mutant protein is shown with dashes. The metal binding site is indicated with a black circle.

Supplementary Figure 5 Overlay of metal-bound APE1 structures.

Overlay of our APE1:DNA substrate structure determined in the presence of Mn2+ with the apoenzyme APE1 structure determined in the presence of (a) manganese (PDB ID 4QH9) (He, H., Chen, Q. & Georgiadis, M.M., Biochemistry 53, 6520-6529, 2014) or (b) lead (PDB ID 1E9N) (Beernink, P.T. et al., J. Mol. Biol. 307, 1023-1034, 2001). The DNA is shown in grey and protein in green for our substrate structure. The manganese and water ions from our APE1:DNA complex are shown as dark purple and blue spheres, respectively. The dashes correspond to key active site contacts in our APE1:DNA complex. Only the Mn2+ ion is shown as magenta for the apoenzyme in panel (a). In panel (b) only the lead ions, in site A and B, are shown as black spheres for the apoenzyme APE1 structure.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 935 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freudenthal, B., Beard, W., Cuneo, M. et al. Capturing snapshots of APE1 processing DNA damage. Nat Struct Mol Biol 22, 924–931 (2015). https://doi.org/10.1038/nsmb.3105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3105

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer