Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins

Abstract

In Gram-negative bacteria, the assembly of β-barrel outer-membrane proteins (OMPs) requires the β-barrel–assembly machinery (BAM) complex. We determined the crystal structure of the 200-kDa BAM complex from Escherichia coli at 3.55-Å resolution. The structure revealed that the BAM complex assembles into a hat-like shape, in which the BamA β-barrel domain forms the hat's crown embedded in the outer membrane, and its five polypeptide transport–associated (POTRA) domains interact with the four lipoproteins BamB, BamC, BamD and BamE, thus forming the hat's brim in the periplasm. The assembly of the BAM complex creates a ring-like apparatus beneath the BamA β-barrel in the periplasm and a potential substrate-exit pore located at the outer membrane–periplasm interface. The complex structure suggests that the chaperone-bound OMP substrates may feed into the chamber of the ring-like apparatus and insert into the outer membrane via the potential substrate-exit pore in an energy-independent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General architecture of the BAM complex.
Figure 2: The overall conformation of BamA in the BAM complex.
Figure 3: The potential substrate-exit pore of the BAM complex.
Figure 4: Close-up view of intercomponent interactions in the BAM complex.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T. & Pfanner, N. Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628–644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walther, D.M., Rapaport, D. & Tommassen, J. Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell. Mol. Life Sci. 66, 2789–2804 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Webb, C.T., Heinz, E. & Lithgow, T. Evolution of the β-barrel assembly machinery. Trends Microbiol. 20, 612–620 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Tommassen, J. Assembly of outer-membrane proteins in bacteria and mitochondria. Microbiology 156, 2587–2596 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Dalbey, R.E., Wang, P. & Kuhn, A. Assembly of bacterial inner membrane proteins. Annu. Rev. Biochem. 80, 161–187 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. White, S.H. & von Heijne, G. How translocons select transmembrane helices. Annu. Rev. Biophys. 37, 23–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Osborne, A.R., Rapoport, T.A. & van den Berg, B. Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21, 529–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Hagan, C.L., Silhavy, T.J. & Kahne, D. β-barrel membrane protein assembly by the Bam complex. Annu. Rev. Biochem. 80, 189–210 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Pugsley, A.P. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57, 50–108 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Knowles, T.J., Scott-Tucker, A., Overduin, M. & Henderson, I.R. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat. Rev. Microbiol. 7, 206–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli . Cell 121, 235–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Ricci, D.P. & Silhavy, T.J. The Bam machine: a molecular cooper. Biochim. Biophys. Acta 1818, 1067–1084 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Rigel, N.W. & Silhavy, T.J. Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Curr. Opin. Microbiol. 15, 189–193 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malinverni, J.C. et al. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli . Mol. Microbiol. 61, 151–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Roman-Hernandez, G., Peterson, J.H. & Bernstein, H.D. Reconstitution of bacterial autotransporter assembly using purified components. eLife 3, e04234 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hagan, C.L., Kim, S. & Kahne, D. Reconstitution of outer membrane protein assembly from purified components. Science 328, 890–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sánchez-Pulido, L., Devos, D., Genevrois, S., Vicente, M. & Valencia, A. POTRA: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. Trends Biochem. Sci. 28, 523–526 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. Jiang, J.H., Tong, J., Tan, K.S. & Gabriel, K. From evolution to pathogenesis: the link between β-barrel assembly machineries in the outer membrane of mitochondria and gram-negative bacteria. Int. J. Mol. Sci. 13, 8038–8050 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Voulhoux, R., Bos, M.P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Noinaj, N. et al. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501, 385–390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ni, D. et al. Structural and functional analysis of the β-barrel domain of BamA from Escherichia coli . FASEB J. 28, 2677–2685 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Albrecht, R. et al. Structure of BamA, an essential factor in outer membrane protein biogenesis. Acta Crystallogr. D Biol. Crystallogr. 70, 1779–1789 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Gruss, F. et al. The structural basis of autotransporter translocation by TamA. Nat. Struct. Mol. Biol. 20, 1318–1320 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Noinaj, N., Fairman, J.W. & Buchanan, S.K. The crystal structure of BamB suggests interactions with BamA and its role within the BAM complex. J. Mol. Biol. 407, 248–260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heuck, A., Schleiffer, A. & Clausen, T. Augmenting β-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins. J. Mol. Biol. 406, 659–666 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, K.H., Aulakh, S. & Paetzel, M. Crystal structure of β-barrel assembly machinery BamCD protein complex. J. Biol. Chem. 286, 39116–39121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jansen, K.B., Baker, S.L. & Sousa, M.C. Crystal structure of BamB bound to a periplasmic domain fragment of BamA, the central component of the β-barrel assembly machine. J. Biol. Chem. 290, 2126–2136 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Albrecht, R. & Zeth, K. Structural basis of outer membrane protein biogenesis in bacteria. J. Biol. Chem. 286, 27792–27803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sandoval, C.M., Baker, S.L., Jansen, K., Metzner, S.I. & Sousa, M.C. Crystal structure of BamD: an essential component of the β-barrel assembly machinery of gram-negative bacteria. J. Mol. Biol. 409, 348–357 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dong, C., Hou, H.F., Yang, X., Shen, Y.Q. & Dong, Y.H. Structure of Escherichia coli BamD and its functional implications in outer membrane protein assembly. Acta Crystallogr. D Biol. Crystallogr. 68, 95–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Knowles, T.J. et al. Structure and function of BamE within the outer membrane and the β-barrel assembly machine. EMBO Rep. 12, 123–128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gatzeva-Topalova, P.Z., Walton, T.A. & Sousa, M.C. Crystal structure of YaeT: conformational flexibility and substrate recognition. Structure 16, 1873–1881 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Gatzeva-Topalova, P.Z., Warner, L.R., Pardi, A. & Sousa, M.C. Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane. Structure 18, 1492–1501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Knowles, T.J. et al. Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. Mol. Microbiol. 68, 1216–1227 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, H. et al. High-resolution structure of a new crystal form of BamA POTRA4-5 from Escherichia coli . Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 734–738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clantin, B. et al. Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 317, 957–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Stenberg, F. et al. Protein complexes of the Escherichia coli cell envelope. J. Biol. Chem. 280, 34409–34419 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, K.H. & Paetzel, M. Crystal structure of Escherichia coli BamB, a lipoprotein component of the β-barrel assembly machinery complex. J. Mol. Biol. 406, 667–678 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Ricci, D.P., Hagan, C.L., Kahne, D. & Silhavy, T.J. Activation of the Escherichia coli β-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proc. Natl. Acad. Sci. USA 109, 3487–3491 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bos, M.P., Robert, V. & Tommassen, J. Functioning of outer membrane protein assembly factor Omp85 requires a single POTRA domain. EMBO Rep. 8, 1149–1154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gessmann, D. et al. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc. Natl. Acad. Sci. USA 111, 5878–5883 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bakelar, J., Buchanan, S.K. & Noinaj, N. The structure of the β-barrel assembly machinery complex. Science 351, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Silhavy (Princeton University) for generously providing the E. coli strain JCM320. We also thank X. Zhang and H. Wu for valuable discussions; R. Zhang and Shanghai Synchrotron Radiation Facility beamline scientists for scheduling beamline time; F. Yang, L. Niu, M. Zhang, L. Shu, Z. Xie and X. Ding from the Mass Spectrometry Core Facility of the Institute of Biophysics, Chinese Academy of Sciences, for help with mass spectrometry analysis of the BAM complex; and the National Supercomputing Center Tianjin Center (Tianhe), China, for computational resources. This work was supported by grants from the Ministry of Science and Technology (2012CB917302 and 2013CB910603 to Y.H.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB080202 to Y.H.) and the National Natural Science Foundation of China (31170698 and 31470743 to Y.H.).

Author information

Authors and Affiliations

Authors

Contributions

Y.H. supervised the project. L.H., J.Z., Y.W., X.Y., H.Z. and D.N. performed protein purification, crystallization and diffraction data collection. Y.H. and B.C. determined the structure and built the model. Y.H. wrote the manuscript. All authors contributed to data analysis.

Corresponding author

Correspondence to Yihua Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Schematic domain organization of the BAM complex and characterization of the purified BAM complex.

a. Schematic domain structures of the mature proteins of BamA, BamB, BamC, BamD and BamE. b. Size exclusion chromatographic profile of the purified BAM complex from bacterial OMs on Superose 6 10/300 GL column. c. 15% SDS-PAGE analysis of fractions from the elution peak (left) and of the BAM complex crystals (dissolved from 50 crystals) to show that BamC remained intact in the crystals (right).

Supplementary Figure 2 Overlay of isolated POTRA domains or β-barrel–attached POTRA domains of BamA.

a. Overlay of POTRA4 domains from BamA in the BAM complex (BAM-POTRA1-5), POTRA4-5 (PDB: 3Q6B), POTRA1-4 (PDBs: 3EFC and 2QCZ) to show the remarkably different inter-POTRA interfaces and orientations. b. Structural overlay of the β-barrel domains of BamA from the BAM complex (BAM-BamA), BamA lacking POTRA1-4 domains (BamA_POTRA5, PDB: 4C4V) and HdBamA lacking POTRA1-3 domains (HdBamA_POTRA4-5, PDB: 4K3C) to show the remarkably different interdomain orientation between BamA β barrel and the POTRA5 domain.

Supplementary Figure 3 Strand β1 of the BamA β-barrel might participate in β-augmentation.

Residues T243, S324, D399 (or T400) and G429 of BamA are located at the middle point of a β strand of POTRA3, POTRA4, POTRA5 and strand β1 of BamA β barrel, respectively. These β strands are located within the chamber of the BAM complex structure and have a potential role in participating β-augmentation for OMP substrates. a. G429P mutant was lethal to the bacteria while other mutants were not. b. G429P mutant was lethal in the presence of 10 μM IPTG. c. Western blot showing that G429P mutant protein was expressed in a similar level to that of the wild-type in the cell. d. Purified G429P mutant protein was well-folded. Purified G429P protein from membranes exhibited apparently heat-modifiable mobility on a 15% SDS-PAGE gel.

Supplementary Figure 4 Structural comparisons of BamE and BamCD complexes.

a. Overlay of BamE in the BAM complex with the isolated BamE structures from crystal structure (BamE-X-ray, PDB: 2YH9) and NMR structure (BamE-NMR, PDB: 2KXX). Overlay of the three β strands of BamE structures reveals an RMSD of 2.5 Å (35 aligned Cα atom pairs) and of 2.2 Å (35 aligned Cα atom pairs) between BamE in the BAM complex and BamE crystal structure or BamE NMR structure. b. Structural comparison of BamCD complex with that in the BAM complex. Neither the BamC_N domain nor the BamC_C domain was visible in the BAM complex structure.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 665 kb)

Supplementary Data Set 1

Uncropped images of western blots for Figure 2d, Figure 4e and Figure 4f (PDF 647 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Zheng, J., Wang, Y. et al. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 23, 192–196 (2016). https://doi.org/10.1038/nsmb.3181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3181

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology