Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shape-specific recognition in the structure of the Vts1p SAM domain with RNA

Abstract

Although the abundant sterile alpha motif (SAM) domain was originally classified as a protein-protein interaction domain, it has recently been shown that certain SAM domains have the ability to bind RNA, defining a new type of post-transcriptional gene regulator. To further understand the function of SAM-RNA recognition, we determined the solution structures of the SAM domain of the Saccharomyces cerevisiae Vts1p (Vts1p-SAM) and the Smaug response element (SRE) stem-loop RNA as a complex and in isolation. The structures show that Vts1p-SAM recognizes predominantly the shape of the SRE rather than its sequence, with the exception of a G located at the tip of the pentaloop. Using microarray gene profiling, we identified several genes in S. cerevisiae that seem to be regulated by Vts1p and contain one or more copies of the SRE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of Vts1p-SAM, secondary structure of the SRE RNA and chemical shift difference mapping upon formation of the complex.
Figure 2: Structure of the free Vts1p-SAM domain and of the free SRE RNA.
Figure 3: Solution structure of Vts1p-SAM domain bound to SRE RNA and molecular basis of the recognition.
Figure 4: Genomic search for natural Vts1p substrates.
Figure 5: Comparison of the Vts1p-SAM–SRE complex with the structures of other SAM domain–containing proteins.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

References

  1. Qiao, F. & Bowie, J.U. The many faces of SAM. Sci. STKE [online] 2005, re7 (2005) (10.1126/stke.2862005re7).

    Article  Google Scholar 

  2. Hall, T.M. SAM breaks its stereotype. Nat. Struct. Biol. 10, 677–679 (2003).

    Article  CAS  Google Scholar 

  3. Sharrocks, A.D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).

    Article  CAS  Google Scholar 

  4. Jousset, C. et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. EMBO J. 16, 69–82 (1997).

    Article  CAS  Google Scholar 

  5. Yu, X., West, S.C. & Egelman, E.H. Structure and subunit composition of the RuvAB-Holliday junction complex. J. Mol. Biol. 266, 217–222 (1997).

    Article  CAS  Google Scholar 

  6. Aviv, T. et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat. Struct. Biol. 10, 614–621 (2003).

    Article  CAS  Google Scholar 

  7. Green, J.B., Gardner, C.D., Wharton, R.P. & Aggarwal, A.K. RNA recognition via the SAM domain of Smaug. Mol. Cell 11, 1537–1548 (2003).

    Article  CAS  Google Scholar 

  8. Dilcher, M., Kohler, B. & von Mollard, G.F. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J. Biol. Chem. 276, 34537–34544 (2001).

    Article  CAS  Google Scholar 

  9. Smibert, C.A., Wilson, J.E., Kerr, K. & Macdonald, P.M. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 10, 2600–2609 (1996).

    Article  CAS  Google Scholar 

  10. Dahanukar, A., Walker, J.A. & Wharton, R.P. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell 4, 209–218 (1999).

    Article  CAS  Google Scholar 

  11. Nelson, M.R., Leidal, A.M. & Smibert, C.A. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J. 23, 150–159 (2004).

    Article  CAS  Google Scholar 

  12. Semotok, J.L. et al. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr. Biol. 15, 284–294 (2005).

    Article  CAS  Google Scholar 

  13. Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427–1436 (2002).

    Article  CAS  Google Scholar 

  14. Chen, J., Chiang, Y.C. & Denis, C.L. CCR4, a 3′-5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 21, 1414–1426 (2002).

    Article  CAS  Google Scholar 

  15. Moore, P.B. Structural motifs in RNA. Annu. Rev. Biochem. 68, 287–300 (1999).

    Article  CAS  Google Scholar 

  16. Hofacker, I.L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003).

    Article  CAS  Google Scholar 

  17. Qiao, F. et al. Derepression by depolymerization; structural insights into the regulation of Yan by Mae. Cell 118, 163–173 (2004).

    Article  CAS  Google Scholar 

  18. Thanos, C.D., Goodwill, K.E. & Bowie, J.U. Oligomeric structure of the human EphB2 receptor SAM domain. Science 283, 833–836 (1999).

    Article  CAS  Google Scholar 

  19. Stefl, R., Skrisovska, L. & Allain, F.H. RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep. 6, 33–38 (2005).

    Article  CAS  Google Scholar 

  20. Wu, H., Henras, A., Chanfreau, G. & Feigon, J. Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc. Natl. Acad. Sci. USA 101, 8307–8312 (2004).

    Article  CAS  Google Scholar 

  21. Lu, D., Searles, M.A. & Klug, A. Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 426, 96–100 (2003).

    Article  CAS  Google Scholar 

  22. Williamson, J.R. Induced fit in RNA-protein recognition. Nat. Struct. Biol. 7, 834–837 (2000).

    Article  CAS  Google Scholar 

  23. Maris, C., Dominguez, C. & Allain, F.H. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 272, 2118–2131 (2005).

    Article  CAS  Google Scholar 

  24. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  Google Scholar 

  25. Collart, M.A. & Timmers, H.T. The eukaryotic Ccr4-not complex: a regulatory platform integrating mRNA metabolism with cellular signaling pathways? Prog. Nucleic Acid Res. Mol. Biol. 77, 289–322 (2004).

    Article  CAS  Google Scholar 

  26. Denis, C.L. & Chen, J. The CCR4-NOT complex plays diverse roles in mRNA metabolism. Prog. Nucleic Acid Res. Mol. Biol. 73, 221–250 (2003).

    Article  CAS  Google Scholar 

  27. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  28. Bax, A., Kontaxis, G. & Tjandra, N. Dipolar couplings in macromolecular structure determination. Methods Enzymol. 339, 127–174 (2001).

    Article  CAS  Google Scholar 

  29. Peterson, R.D., Theimer, C.A., Wu, H. & Feigon, J. New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-protein complexes. J. Biomol. NMR 28, 59–67 (2004).

    Article  CAS  Google Scholar 

  30. Zwahlen, C. et al. Method for measurement of intermolecular NOEs by multinuclear NMR spectrocopy:application to a bacteriophage lambda N-peptide/boxB RNA complex. J. Am. Chem. Soc. 119, 6711–6721 (1997).

    Article  CAS  Google Scholar 

  31. Herrmann, T., Guntert, P. & Wuthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002).

    Article  CAS  Google Scholar 

  32. Guntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  CAS  Google Scholar 

  33. Case, D.A. et al. AMBER Version 7 (University of California, San Francisco, USA, 2002).

    Google Scholar 

  34. Cornell, W.D. et al. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).

    Article  CAS  Google Scholar 

  35. Bashford, D. & Case, D. Generalized born models of macromolecular solvation effects. Annu. Rev. Phys. Chem. 51, 129–152 (2000).

    Article  CAS  Google Scholar 

  36. Padrta, P., Stefl, R., Kralik, L., Zidek, L. & Sklenar, V. Refinement of d(GCGAAGC) hairpin structure using one- and two-bond residual dipolar couplings. J. Biomol. NMR 24, 1–14 (2002).

    Article  CAS  Google Scholar 

  37. Tsui, V., Zhu, L., Huang, T.H., Wright, P.E. & Case, D.A. Assessment of zinc finger orientations by residual dipolar coupling constants. J. Biomol. NMR 16, 9–21 (2000).

    Article  CAS  Google Scholar 

  38. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  39. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 29–32, 51–55 (1996).

    Article  Google Scholar 

  40. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

    Google Scholar 

  41. Lee, A., Henras, A.K. & Chanfreau, G. Multiple RNA surveillance pathways limit aberrant expression of iron uptake mRNAs and prevent iron toxicity in S. cerevisiae. Mol. Cell 19, 39–51 (2005).

    Article  CAS  Google Scholar 

  42. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003).

    Article  CAS  Google Scholar 

  43. Duchow, H.K., Brechbiel, J.L., Chatterjee, S. & Gavis, E.R. The nanos translational control element represses translation in somatic cells by a Bearded box-like motif. Dev. Biol. 282, 207–217 (2005).

    Article  CAS  Google Scholar 

  44. Mulder, F.A., Schipper, D., Bott, R. & Boelens, R. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins. J. Mol. Biol. 292, 111–123 (1999).

    Article  CAS  Google Scholar 

  45. Ariyoshi, M., Nishino, T., Iwasaki, H., Shinagawa, H. & Morikawa, K. Crystal structure of the holliday junction DNA in complex with a single RuvA tetramer. Proc. Natl. Acad. Sci. USA 97, 8257–8262 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Y. Barral, Institute of Biochemistry, Swiss Federal Institute of Technology in Zurich, for providing the yeast genomic DNA for cloning and to S. Pitsch, L. Reymond and P. Wenter, Ecole Polytechnique Fédérale de Lausanne, for chemical synthesis of the 13C sugar-labeled RNAs. We thank the University of California at Los Angeles Microarray Core Facility for help with microarray experiments. This investigation was supported by a predoctoral fellowship from the Roche Research Foundation for Biology to F.C.O., the American Heart Association Western States Affiliate (A.L.), a Human Frontier Science Program postdoctoral fellowship to R.S., a US National Science Foundation IGERT DGE grant to M.J., US National Institutes of Health grant GM 61518 to G.C. and grants from the Swiss National Science Foundation, the Structural Biology National Center of Competence in Research and the Roche Research Fund for Biology at the Swiss Federal Institute of Technology in Zurich to F.H.-T.A. F.H.-T.A. is a European Molecular Biology Organization Young Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric H-T Allain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Chemical shift differences upon complexation of Vts1p-SAM and the SRE RNA. (PDF 489 kb)

Supplementary Fig. 2

Structure ensembles of the free Vts1p-SAM domain, the free RNA and their complex. (PDF 3429 kb)

Supplementary Fig. 3

13C-1H HSQC spectra of two sugar-labeled SRE RNAs in their bound state. (PDF 1090 kb)

Supplementary Fig. 4

Binding studies of mutant SRE RNAs. (PDF 879 kb)

Supplementary Fig. 5

Extended list of potential Vts1p binding targets found in strongly upregulated transcripts in the vts1Δ strain. (PDF 366 kb)

Supplementary Fig. 6

Conservation of predicted Vts1p-binding sites in closely related yeast species. (PDF 396 kb)

Supplementary Table 1

Transcripts found to be strongly upregulated in the vts1Δ strain. (PDF 48 kb)

Supplementary Table 2

Frequency of occurrence of computationally predicted Vts1p-target stem-loops in S. cerevisiae genomic ORF sequences and in sequences from the set of genes upregulated in the vts1Δ strain. (PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberstrass, F., Lee, A., Stefl, R. et al. Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat Struct Mol Biol 13, 160–167 (2006). https://doi.org/10.1038/nsmb1038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing