Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA

Abstract

Bacterial tRNA adenosine deaminases (TadAs) catalyze the hydrolytic deamination of adenosine to inosine at the wobble position of tRNAArg2, a process that enables this single tRNA to recognize three different arginine codons in mRNA. In addition, inosine is also introduced at the wobble position of multiple eukaryotic tRNAs. The genes encoding these deaminases are essential in bacteria and yeast, demonstrating the importance of their biological activity. Here we report the crystallization and structure determination to 2.0 Å of Staphylococcus aureus TadA bound to the anticodon stem-loop of tRNAArg2 bearing nebularine, a non-hydrolyzable adenosine analog, at the wobble position. The cocrystal structure reveals the basis for both sequence and structure specificity in the interactions of TadA with RNA, and it additionally provides insight into the active site architecture that promotes efficient hydrolytic deamination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TadA deaminates adenosine in tRNA to form inosine.
Figure 2: Structure of TadA in complex with RNA.
Figure 3: Interactions between TadA and RNA.
Figure 4: TadA active site with the adenosine analog nebularine inserted.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Carter, C.W. Jr. The nucleoside deaminases for cytidine and adenosine: structure, transition state stabilization, mechanism, and evolution. Biochimie 77, 92–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Maas, S., Rich, A. & Nishikura, K. A-to-I RNA editing: recent news and residual mysteries. J. Biol. Chem. 278, 1391–1394 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Pham, P., Bransteitter, R. & Goodman, M.F. Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry 44, 2703–2715 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Wedekind, J.E., Dance, G.S., Sowden, M.P. & Smith, H.C. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 19, 207–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Johansson, E., Mejlhede, N., Neuhard, J. & Larsen, S. Crystal structure of the tetrameric cytidine deaminase from Bacillus subtilis at 2.0 Å resolution. Biochemistry 41, 2563–2570 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Wilson, D.K., Rudolph, F.B. & Quiocho, F.A. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science 252, 1278–1284 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    CAS  PubMed  Google Scholar 

  10. Teng, B., Burant, C.F. & Davidson, N.O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260, 1816–1819 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Wolf, J., Gerber, A.P. & Keller, W. TadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J. 21, 3841–3851 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A. & Steinberg, S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26, 148–153 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gerber, A.P. & Keller, W. An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science 286, 1146–1149 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Gerber, A., Grosjean, H., Melcher, T. & Keller, W. Tad1p, a yeast tRNA-specific adenosine deaminase, is related to the mammalian pre-mRNA editing enzymes ADAR1 and ADAR2. EMBO J. 17, 4780–4789 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grosjean, H. et al. Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review. Biochimie 78, 488–501 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Betts, L., Xiang, S., Short, S.A., Wolfenden, R. & Carter, C.W. Jr. Cytidine deaminase. The 2.3 Å crystal structure of an enzyme: transition-state analog complex. J. Mol. Biol. 235, 635–656 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Chung, S.J., Fromme, J.C. & Verdine, G.L. Structure of human cytidine deaminase bound to a potent inhibitor. J. Med. Chem. 48, 658–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Xie, K. et al. The structure of a yeast RNA-editing deaminase provides insight into the fold and function of activation-induced deaminase and APOBEC-1. Proc. Natl. Acad. Sci. USA 101, 8114–8119 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kinoshita, T., Nishio, N., Nakanishi, I., Sato, A. & Fujii, T. Structure of bovine adenosine deaminase complexed with 6-hydroxy-1,6-dihydropurine riboside. Acta Crystallogr. D Biol. Crystallogr. 59, 299–303 (2003).

    Article  PubMed  Google Scholar 

  20. Elias, Y. & Huang, R.H. Biochemical and structural studies of A-to-I editing by tRNA:A34 deaminases at the wobble position of transfer RNA. Biochemistry 44, 12057–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Kuratani, M. et al. Crystal structure of tRNA adenosine deaminase (TadA) from Aquifex aeolicus. J. Biol. Chem. 280, 16002–16008 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Shi, H. & Moore, P.B. The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. RNA 6, 1091–1105 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nissen, P., Thirup, S., Kjeldgaard, M. & Nyborg, J. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Struct. Fold. Des. 7, 143–156 (1999).

    Article  CAS  Google Scholar 

  24. Murphy, F.V.t. & Ramakrishnan, V. Structure of a purine-purine wobble base pair in the decoding center of the ribosome. Nat. Struct. Mol. Biol. 11, 1251–1252 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Nagaswamy, U., Voss, N., Zhang, Z. & Fox, G.E. Database of non-canonical base pairs found in known RNA structures. Nucleic Acids Res. 28, 375–376 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ashraf, S.S. et al. The uridine in “U-turn”: contributions to tRNA-ribosomal binding. RNA 5, 503–511 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie, W., Liu, X. & Huang, R.H. Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate. Nat. Struct. Biol. 10, 781–788 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Rould, M.A., Perona, J.J. & Steitz, T.A. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature 352, 213–218 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Wolfenden, R. & Kati, W.M. Testing the limits of protein-ligand binding discrimination with transition-state analogue inhibitors. Acc. Chem. Res. 24, 209–215 (1991).

    Article  CAS  Google Scholar 

  31. Veliz, E.A., Easterwood, L.M. & Beal, P.A. Substrate analogues for an RNA-editing adenosine deaminase: mechanistic investigation and inhibitor design. J. Am. Chem. Soc. 125, 10867–10876 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Terwilliger, T.C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. COLLABORATIVE COMPUTATIONAL PROJECT. N. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  37. Cowtan, K. dm: An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

    Google Scholar 

  38. Morris, R.J. et al. Breaking good resolutions with ARP/wARP. J. Synchrotron Radiat. 11, 56–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  41. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Laskowski, R.J., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–290 (1993).

    Article  CAS  Google Scholar 

  43. Kabsch, W. A solution for the best way to relate two sets of vectors. Acta Crystallogr. A 32, 922–923 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the entire beamline staff at NSLS X25A, especially M. Becker, for assistance in data collection and processing, and to members of the Verdine research group for valuable help and discussions and for critical reading of the manuscript. H.C.L. was supported by a postdoctoral fellowship from the Irvington Institute for Immunological Research, A.J.R. was supported by a National Science Foundation graduate fellowship and the work was also supported by a grant from the US National Institutes of Health to G.L.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L Verdine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Protein sequence alignment of TadA with related deaminases. (PDF 989 kb)

Supplementary Fig. 2

Conformational changes in TadA. (PDF 512 kb)

Supplementary Fig. 3

Comparison of base pairing observed between C32-A38 in the TadA–RNA structure, the tRNAPhe structure, and a normal C-A+ wobble pair. (PDF 104 kb)

Supplementary Fig. 4

Superposition of three anticodon stem-loops. (PDF 607 kb)

Supplementary Fig. 5

Activity of TadA on minimal RNA stem-loop substrates. (PDF 490 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Losey, H., Ruthenburg, A. & Verdine, G. Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA. Nat Struct Mol Biol 13, 153–159 (2006). https://doi.org/10.1038/nsmb1047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing