Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents

Abstract

Nicotinamide phosphoribosyltransferase (NMPRTase) has a crucial role in the salvage pathway of NAD+ biosynthesis, and a potent inhibitor of NMPRTase, FK866, can reduce cellular NAD+ levels and induce apoptosis in tumors. We have determined the crystal structures at up to 2.1-Å resolution of human and murine NMPRTase, alone and in complex with the reaction product nicotinamide mononucleotide or the inhibitor FK866. The structures suggest that Asp219 is a determinant of substrate specificity of NMPRTase, which is confirmed by our mutagenesis studies. FK866 is bound in a tunnel at the interface of the NMPRTase dimer, and mutations in this binding site can abolish the inhibition by FK866. Contrary to current knowledge, the structures show that FK866 should compete directly with the nicotinamide substrate. Our structural and biochemical studies provide a starting point for the development of new anticancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of NMPRTase with other phosphoribosyltransferases involved in NAD+ biosynthesis.
Figure 2: Structure of human NMPRTase.
Figure 3: Binding mode of NMN and the active site of NMPRTase.
Figure 4: Kinetic characterization of substrate specificity and inhibitor sensitivity of human NMPRTase.
Figure 5: The FK866-binding site of human NMPRTase.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Ziegler, M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur. J. Biochem. 267, 1550–1564 (2000).

    Article  CAS  Google Scholar 

  2. Guarente, L. & Picard, F. Calorie restriction-the SIR2 connection. Cell 120, 473–482 (2005).

    Article  CAS  Google Scholar 

  3. Marmorstein, R. Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochem. Soc. Trans. 32, 904–909 (2004).

    Article  CAS  Google Scholar 

  4. Magni, G. et al. Enzymology of NAD+ homeostasis in man. Cell. Mol. Life Sci. 61, 19–34 (2004).

    Article  CAS  Google Scholar 

  5. Araki, T., Sasaki, Y. & Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013 (2004).

    Article  CAS  Google Scholar 

  6. Guse, A.H. Second messenger function and the structure-activity relationship of cyclic adenosine diphosphoribose (cADPR). FEBS J. 272, 4590–4597 (2005).

    Article  CAS  Google Scholar 

  7. Rongvaux, A. et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phorphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol. 32, 3225–3234 (2002).

    Article  CAS  Google Scholar 

  8. Wosikowski, K. et al. WK175, a novel antitumor agent, decreases the intracellular nicotinamide adenine dinucleotide concentration and induces the apoptotic cascade in human leukemia cells. Cancer Res. 62, 1057–1062 (2002).

    CAS  PubMed  Google Scholar 

  9. Hasmann, M. & Schemainda, I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 63, 7436–7442 (2003).

    CAS  PubMed  Google Scholar 

  10. Hufton, S.E. et al. A profile of differentially expressed genes in primary colorectal cancer using suppression substractive hybridization. FEBS Lett. 463, 77–82 (1999).

    Article  CAS  Google Scholar 

  11. van Beijnum, J.R. et al. Target validation for genomics using peptide-specific phage antibodies: a study of five gene products overexpressed in colorectal cancer. Int. J. Cancer 101, 118–127 (2002).

    Article  CAS  Google Scholar 

  12. Muruganandham, M. et al. Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Clin. Cancer Res. 11, 3503–3513 (2005).

    Article  CAS  Google Scholar 

  13. Drevs, J., Loser, R., Rattel, B. & Esser, N. Antiangiogenic potency of FK866/K22.175, a new inhibitor of intracellular NAD biosynthesis, in murine renal cell carcinoma. Anticancer Res. 23, 4853–4858 (2003).

    CAS  PubMed  Google Scholar 

  14. Samal, B. et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 14, 1431–1437 (1994).

    Article  CAS  Google Scholar 

  15. Fukuhara, A. et al. Visfatin, a protein secreted by visceral fat that mimics the effects of insulin. Science 307, 426–430 (2005).

    Article  CAS  Google Scholar 

  16. Hug, C. & Lodish, H.F. Visfatin: a new adipokine. Science 307, 366–367 (2005).

    Article  CAS  Google Scholar 

  17. Sethi, J.K. & Vidal-Puig, A. Visfatin: the missing link between intra-abdominal obesity and diabetes? Trends Mol. Med. 11, 344–347 (2005).

    Article  CAS  Google Scholar 

  18. Stephens, J.M. & Vidal-Puig, A.J. An update on visfatin/pre-B cell colony-enhancing factor, an ubiquitously expressed, illusive cytokine that is regulated in obesity. Curr. Opin. Lipidol. 17, 128–131 (2006).

    Article  CAS  Google Scholar 

  19. Kitani, T., Okuno, S. & Fujisawa, H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett. 544, 74–78 (2003).

    Article  CAS  Google Scholar 

  20. Eads, J.C., Ozturk, D., Wexler, T.B., Grubmeyer, C. & Sacchettini, J.C. A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase. Structure 5, 47–58 (1997).

    Article  CAS  Google Scholar 

  21. Sharma, V., Grubmeyer, C. & Sacchettini, J.C. Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: a potential TB drug target. Structure 6, 1587–1599 (1998).

    Article  CAS  Google Scholar 

  22. Shin, D.H. et al. Crystal structure of a nicotinate phosphoribosyltransferase from Thermoplasma acidophilum. J. Biol. Chem. 280, 18326–18335 (2005).

    Article  CAS  Google Scholar 

  23. Chappie, J.S. et al. The structure of a eukaryotic nicotinic acid phosphoribosyltransferase reveals structural heterogeneity among type II PRTases. Structure 13, 1385–1396 (2005).

    Article  CAS  Google Scholar 

  24. Hendrickson, W.A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  CAS  Google Scholar 

  25. Revollo, J.R., Grimm, A.A. & Imai, S.-I. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754–50763 (2004).

    Article  CAS  Google Scholar 

  26. Gross, J., Rajavel, M., Segura, E. & Grubmeyer, C. Energy coupling in Salmonella typhimurium nicotinic acid phosphoribosyltransferase: identification of His-219 as site of phosphorylation. Biochemistry 35, 3917–3924 (1996).

    Article  CAS  Google Scholar 

  27. Gross, J.W., Rajavel, M. & Grubmeyer, C. Kinetic mechanism of nicotinic acid phosphoribosyltransferase: implications for energy coupling. Biochemistry 37, 4189–4199 (1998).

    Article  CAS  Google Scholar 

  28. Hendrickson, W.A., Horton, J.R. & LeMaster, D.M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  30. Weeks, C.M. & Miller, R. The design and implementation of SnB v2.0. J. Appl. Crystallogr. 32, 120–124 (1999).

    Article  CAS  Google Scholar 

  31. Terwilliger, T.C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003).

    Article  CAS  Google Scholar 

  32. Collaborative Compuational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  33. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  34. Brunger, A.T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  35. Jogl, G., Tao, X., Xu, Y. & Tong, L. COMO: a program for combined molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 57, 1127–1134 (2001).

    Article  CAS  Google Scholar 

  36. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  37. Zhou, T. et al. Structure of human nicotinamide/nicotinic acid mononucleotide adenylyltransferase. Basis for the dual substrate specificity and activation of the oncolytic agent tiazofurin. J. Biol. Chem. 277, 13148–13154 (2002).

    Article  CAS  Google Scholar 

  38. Jauch, R., Humm, A., Huber, R. & Wahl, M.C. Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements. J. Biol. Chem. 280, 15131–15140 (2005).

    Article  CAS  Google Scholar 

  39. Kang, G.B. et al. Crystal structure of NH3-dependent NAD+ synthetase from Helicobacter pylori. Proteins 58, 985–988 (2005).

    Article  CAS  Google Scholar 

  40. Carson, M. Ribbon models of macromolecules. J. Mol. Graph. 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  41. Evans, S.V. SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Schwanof and R. Abramowitz for setting up the X4A and X4C beamlines at the National Synchrotron Light Source, Y. Shen and S. Xiang for help with data collection at the synchrotron source, M. Matsumoto, J. Buteau and D. Accili for help with the insulin assay, H. Zhang (University of Texas Southwestern Medical Center), M. Wahl (Max-Planck-Institute for Biophysical Chemistry) and S.H. Eom (Gwangju Institute of Science & Technology) for respectively providing the bacterial expression plasmids for human NMN/NAMN adenylyltransferase, E. coli NADS and Helicobacter pylori NADS, and W.W. Cleland for helpful discussions. This work was supported in part by a grant from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Structures of NAPRTase and QAPRTase dimers (PDF 760 kb)

Supplementary Fig. 2

Structural changes upon NMN and FK866 binding (PDF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, J., Tao, X. & Tong, L. Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat Struct Mol Biol 13, 582–588 (2006). https://doi.org/10.1038/nsmb1105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing