Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and TBP binding of the Mediator head subcomplex Med8–Med18–Med20

Abstract

The Mediator head module stimulates basal RNA polymerase II (Pol II) transcription and enables transcriptional regulation. Here we show that the head subunits Med8, Med18 and Med20 form a subcomplex (Med8/18/20) with two submodules. The highly conserved N-terminal domain of Med8 forms one submodule that binds the TATA box–binding protein (TBP) in vitro and is essential in vivo. The second submodule consists of the C-terminal region of Med8 (Med8C), Med18 and Med20. X-ray analysis of this submodule reveals that Med18 and Med20 form related β-barrel folds. A conserved putative protein-interaction face on the Med8C/18/20 submodule includes sites altered by srb mutations, which counteract defects resulting from Pol II truncation. Our results and published data support a positive role of the Med8/18/20 subcomplex in initiation-complex formation and suggest that the Mediator head contains a multipartite TBP-binding site that can be modulated by transcriptional activators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary and secondary structure of Med8, Med18 and Med20.
Figure 2: Crystal structure of the Mediator head submodule Med8C/18/20.
Figure 3: Comparison of the Med18/20 heterodimer with similar known structures.
Figure 4: Modularity of Med8 in vivo.
Figure 5: TBP binding of Med8/18/20, Med8 and Med8N.
Figure 6: Med8/18/20 architecture and surface conservation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Malik, S. & Roeder, R.G. Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem. Sci. 25, 277–283 (2000).

    Article  CAS  Google Scholar 

  2. Bjorklund, S. & Gustafsson, C.M. The mediator complex. Adv. Protein Chem. 67, 43–65 (2004).

    Article  Google Scholar 

  3. Naar, A.M., Lemon, B.D. & Tjian, R. Transcriptional coactivator complexes. Annu. Rev. Biochem. 70, 475–501 (2001).

    Article  CAS  Google Scholar 

  4. Kornberg, R.D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).

    Article  CAS  Google Scholar 

  5. Bourbon, H.M. et al. A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol. Cell 14, 553–557 (2004).

    Article  CAS  Google Scholar 

  6. Boube, M., Joulia, L., Cribbs, D.L. & Bourbon, H.M. Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110, 143–151 (2002).

    Article  CAS  Google Scholar 

  7. Nonet, M.L. & Young, R.A. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123, 715–725 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Thompson, C.M., Koleske, A.J., Chao, D.M. & Young, R.A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73, 1361–1375 (1993).

    Article  CAS  Google Scholar 

  9. Guglielmi, B. et al. A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res. 32, 5379–5391 (2004).

    Article  CAS  Google Scholar 

  10. Kang, J.S. et al. The structural and functional organization of the yeast mediator complex. J. Biol. Chem. 276, 42003–42010 (2001).

    Article  CAS  Google Scholar 

  11. Dotson, M.R. et al. Structural organization of yeast and mammalian mediator complexes. Proc. Natl. Acad. Sci. USA 97, 14307–14310 (2000).

    Article  CAS  Google Scholar 

  12. Cantin, G.T., Stevens, J.L. & Berk, A.J. Activation domain-mediator interactions promote transcription preinitiation complex assembly on promoter DNA. Proc. Natl. Acad. Sci. USA 100, 12003–12008 (2003).

    Article  CAS  Google Scholar 

  13. Ranish, J.A., Yudkovsky, N. & Hahn, S. Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev. 13, 49–63 (1999).

    Article  CAS  Google Scholar 

  14. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  Google Scholar 

  15. Takagi, Y. & Kornberg, R.D. Mediator as a general transcription factor. J. Biol. Chem. 281, 80–89 (2006).

    Article  CAS  Google Scholar 

  16. Lee, Y.C., Park, J.M., Min, S., Han, S.J. & Kim, Y.J. An activator binding module of yeast RNA polymerase II holoenzyme. Mol. Cell. Biol. 19, 2967–2976 (1999).

    Article  CAS  Google Scholar 

  17. Koleske, A.J., Buratowski, S., Nonet, M. & Young, R.A. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 69, 883–894 (1992).

    Article  CAS  Google Scholar 

  18. Koh, S.S., Ansari, A.Z., Ptashne, M. & Young, R.A. An activator target in the RNA polymerase II holoenzyme. Mol. Cell 1, 895–904 (1998).

    Article  CAS  Google Scholar 

  19. Lee, T.I. et al. Interplay of positive and negative regulators in transcription initiation by RNA polymerase II holoenzyme. Mol. Cell. Biol. 18, 4455–4462 (1998).

    Article  CAS  Google Scholar 

  20. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  21. Lima, C.D., Wang, L.K. & Shuman, S. Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus. Cell 99, 533–543 (1999).

    Article  CAS  Google Scholar 

  22. Sismeiro, O., Trotot, P., Biville, F., Vivares, C. & Danchin, A. Aeromonas hydrophila adenylyl cyclase 2: a new class of adenylyl cyclases with thermophilic properties and sequence similarities to proteins from hyperthermophilic archaebacteria. J. Bacteriol. 180, 3339–3344 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Iyer, L.M. & Aravind, L. The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates. BMC Genomics 3, 33 (2002).

    Article  Google Scholar 

  24. Brower, C.S. et al. Mammalian mediator subunit mMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase. Proc. Natl. Acad. Sci. USA 99, 10353–10358 (2002).

    Article  CAS  Google Scholar 

  25. Baumli, S., Hoeppner, S. & Cramer, P. A conserved mediator hinge revealed in the structure of the MED7/MED21 (Med7/Srb7) heterodimer. J. Biol. Chem. 280, 18171–18178 (2005).

    Article  CAS  Google Scholar 

  26. Hoeppner, S., Baumli, S. & Cramer, P. Structure of the mediator subunit cyclin C and its implications for CDK8 function. J. Mol. Biol. 350, 833–842 (2005).

    Article  CAS  Google Scholar 

  27. van de Peppel, J. et al. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol. Cell 19, 511–522 (2005).

    Article  CAS  Google Scholar 

  28. Yudkovsky, N., Ranish, J.A. & Hahn, S. A transcription reinitiation intermediate that is stabilized by activator. Nature 408, 225–229 (2000).

    Article  CAS  Google Scholar 

  29. Zhu, X. et al. Genome-wide occupancy profile of mediator and the Srb8–11 module reveals interactions with coding regions. Mol. Cell 22, 169–178 (2006).

    Article  CAS  Google Scholar 

  30. Andrau, J.C. et al. Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA. Mol. Cell 22, 179–192 (2006).

    Article  CAS  Google Scholar 

  31. Johnson, K.M. & Carey, M. Assembly of a mediator/TFIID/TFIIA complex bypasses the need for an activator. Curr. Biol. 13, 772–777 (2003).

    Article  CAS  Google Scholar 

  32. Wu, S.Y., Zhou, T. & Chiang, C.M. Human mediator enhances activator-facilitated recruitment of RNA polymerase II and promoter recognition by TATA-binding protein (TBP) independently of TBP-associated factors. Mol. Cell. Biol. 23, 6229–6242 (2003).

    Article  CAS  Google Scholar 

  33. Taatjes, D.J., Naar, A.M., Andel, F., III, Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).

    Article  CAS  Google Scholar 

  34. Liu, Y., Ranish, J.A., Aebersold, R. & Hahn, S. Yeast nuclear extract contains two major forms of RNA polymerase II mediator complexes. J. Biol. Chem. 276, 7169–7175 (2001).

    Article  CAS  Google Scholar 

  35. Budisa, N. et al. High-level biosynthetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. Eur. J. Biochem. 230, 788–796 (1995).

    Article  CAS  Google Scholar 

  36. Meinhart, A., Blobel, J. & Cramer, P. An extended winged helix domain in general transcription factor E/IIEalpha. J. Biol. Chem. 278, 48267–48274 (2003).

    Article  CAS  Google Scholar 

  37. Juo, Z.S., Kassavetis, G.A., Wang, J., Geiduschek, E.P. & Sigler, P.B. Crystal structure of a transcription factor IIIB core interface ternary complex. Nature 422, 534–539 (2003).

    Article  CAS  Google Scholar 

  38. Armache, K.-J., Kettenberger, H. & Cramer, P. Architecture of the initiation-competent 12-subunit RNA polymerase II. Proc. Natl. Acad. Sci. USA 100, 6964–6968 (2003).

    Article  CAS  Google Scholar 

  39. Leslie, A. in Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography No. 26 (Daresbury Laboratory, Warrington, UK, 1992).

    Google Scholar 

  40. Terwilliger, T.C. Automated structure solution, density modification and model building. Acta Crystallogr. D Biol. Crystallogr. 58, 1937–1940 (2002).

    Article  Google Scholar 

  41. Roussel, A. & Cambillau, C. Turbo-FRODO. in Silicon Graphics Geometry, Partners Directory 77–78 (Silicon Graphics, Mountain View, California, USA, 1989).

    Google Scholar 

  42. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzym. 276, 307–326 (1996).

    Article  Google Scholar 

  44. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  45. Collaborative Computational Project, Number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr 50, 760–763 (1994).

  46. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  47. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensibility of progressive multiple sequence alignment through sequence weighing, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  48. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

  49. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank S. Baumli for discussions, K. Armache for help with TFIIB preparation and other members of the Cramer laboratory for help. This work was supported by a European Molecular Biology Organization long-term fellowship to L.L., by grants of the Deutsche Forschungsgemeinschaft, the Sonderforschungsbereich SFB646 and the Fonds der chemischen Industrie to P.C. and K.S. and by the EU-grant 3D repertoire, contract no. LSHG-CT-2005-512028. Part of this work was performed at the Swiss Light Source at the Paul Scherrer Institute, Villigen, Switzerland. We thank C. Schulze-Briese and his team at the Swiss Light Source for help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Cramer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Structure of the free Med18/20 heterodimer. (PDF 1508 kb)

Supplementary Fig. 2

Conserved intersubunit contacts within the Med8C/18/20 structure. (PDF 2278 kb)

Supplementary Fig. 3

Flexibility of the Med8C/18/20 trimer. (PDF 1562 kb)

Supplementary Table 1

Med18-Med20 contacts. (PDF 35 kb)

Supplementary Table 2

Med8-Med18 contacts. (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larivière, L., Geiger, S., Hoeppner, S. et al. Structure and TBP binding of the Mediator head subcomplex Med8–Med18–Med20. Nat Struct Mol Biol 13, 895–901 (2006). https://doi.org/10.1038/nsmb1143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing