Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms

Abstract

The Dam1 kinetochore complex is essential for chromosome segregation in budding yeast. This ten-protein complex self-assembles around microtubules, forming ring-like structures that move with depolymerizing microtubule ends, a mechanism with implications for cellular function. Here we used EM-based single-particle and helical analyses to define the architecture of the Dam1 complex at 30-Å resolution and the self-assembly mechanism. Ring oligomerization seems to be facilitated by a conformational change upon binding to microtubules, suggesting that the Dam1 ring is not preformed, but self-assembles around kinetochore microtubules. The C terminus of the Dam1p protein, where most of the Aurora kinase Ipl1 phosphorylation sites reside, is in a strategic location to affect oligomerization and interactions with the microtubule. One of Ipl1's roles might be to fine-tune the coupling of the microtubule interaction with the conformational change required for oligomerization, with phosphorylation resulting in ring breakdown.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Negative-stain EM of unassembled Dam1 complexes.
Figure 2: Single-particle three-dimensional reconstructions of wild-type and ΔC Dam1 complexes.
Figure 3: End-on views of wild-type and ΔC Dam1 ring complexes.
Figure 4: Helical reconstruction of wild-type Dam1 complex helical assembly around microtubules.
Figure 5: Modeled conformational changes in the Dam1 complex between the unassembled and assembled states, viewed looking out from the microtubule.
Figure 6: Docking of the single-particle Dam1 complex reconstruction into the helical assembly around the microtubule.
Figure 7: Model of microtubule-induced self-assembly of the Dam1 ring complex at the kinetochore.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

References

  1. Cheeseman, I.M., Drubin, D.G. & Barnes, G. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J. Cell Biol. 157, 199–203 (2002).

    Article  CAS  Google Scholar 

  2. McAinsh, A.D., Tytell, J.D. & Sorger, P.K. Structure, function, and regulation of budding yeast kinetochores. Annu. Rev. Cell Dev. Biol. 19, 519–539 (2003).

    Article  CAS  Google Scholar 

  3. Maiato, H., DeLuca, J., Salmon, E.D. & Earnshaw, W.C. The dynamic kinetochore-microtubule interface. J. Cell Sci. 117, 5461–5477 (2004).

    Article  CAS  Google Scholar 

  4. Hofmann, C. et al. Saccharomyces cerevisiae Duo1p and Dam1p, novel proteins involved in mitotic spindle function. J. Cell Biol. 143, 1029–1040 (1998).

    Article  CAS  Google Scholar 

  5. Jones, M.H., Bachant, J.B., Castillo, A.R., Giddings, T.H., Jr. & Winey, M. Yeast Dam1p is required to maintain spindle integrity during mitosis and interacts with the Mps1p kinase. Mol. Biol. Cell 10, 2377–2391 (1999).

    Article  CAS  Google Scholar 

  6. Cheeseman, I.M. et al. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J. Cell Biol. 155, 1137–1145 (2001).

    Article  CAS  Google Scholar 

  7. Joglekar, A.P., Bouck, D.C., Molk, J.N., Bloom, K.S. & Salmon, E.D. Molecular architecture of a kinetochore-microtubule attachment site. Nat. Cell Biol. 8, 581–585 (2006).

    Article  CAS  Google Scholar 

  8. Cheeseman, I.M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  Google Scholar 

  9. Shimogawa, M.M. et al. Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Curr. Biol. 16, 1489–1501 (2006).

    Article  CAS  Google Scholar 

  10. Westermann, S. et al. Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005).

    Article  CAS  Google Scholar 

  11. Miranda, J.J., De Wulf, P., Sorger, P.K. & Harrison, S.C. The yeast DASH complex forms closed rings on microtubules. Nat. Struct. Mol. Biol. 12, 138–143 (2005).

    Article  CAS  Google Scholar 

  12. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).

    Article  CAS  Google Scholar 

  13. Nogales, E. & Wang, H.W. Structural intermediates in microtubule assembly and disassembly: how and why? Curr. Opin. Cell Biol. 18, 179–184 (2006).

    Article  CAS  Google Scholar 

  14. Cheeseman, I.M., Enquist-Newman, M., Muller-Reichert, T., Drubin, D.G. & Barnes, G. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J. Cell Biol. 152, 197–212 (2001).

    Article  CAS  Google Scholar 

  15. Miranda, J.J., King, D.S. & Harrison, S.C. Protein arms in the kinetochore-microtubule interface of the yeast DASH complex. Mol. Biol. Cell published online 25 April 2007 (doi:10.1091/mbc.E07-02-0135).

    Article  CAS  Google Scholar 

  16. Molodtsov, M.I., Grishchuk, E.L., Efremov, A.K., McIntosh, J.R. & Ataullakhanov, F.I. Force production by depolymerizing microtubules: a theoretical study. Proc. Natl. Acad. Sci. USA 102, 4353–4358 (2005).

    Article  CAS  Google Scholar 

  17. Al-Bassam, J., Ozer, R.S., Safer, D., Halpain, S. & Milligan, R.A. MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J. Cell Biol. 157, 1187–1196 (2002).

    Article  CAS  Google Scholar 

  18. Mizuno, N. et al. Dynein and kinesin share an overlapping microtubule-binding site. EMBO J. 23, 2459–2467 (2004).

    Article  CAS  Google Scholar 

  19. Hirose, K., Akimaru, E., Akiba, T., Endow, S.A. & Amos, L.A. Large conformational changes in a kinesin motor catalyzed by interaction with microtubules. Mol. Cell 23, 913–923 (2006).

    Article  CAS  Google Scholar 

  20. Marx, A., Muller, J., Mandelkow, E.M., Hoenger, A. & Mandelkow, E. Interaction of kinesin motors, microtubules, and MAPs. J. Muscle Res. Cell Motil. 27, 125–137 (2006).

    Article  CAS  Google Scholar 

  21. DeRosier, D., Stokes, D.L. & Darst, S.A. Averaging data derived from images of helical structures with different symmetries. J. Mol. Biol. 289, 159–165 (1999).

    Article  CAS  Google Scholar 

  22. Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005).

    Article  CAS  Google Scholar 

  23. Tan, D., Asenjo, A.B., Mennella, V., Sharp, D.J. & Sosa, H. Kinesin-13s form rings around microtubules. J. Cell Biol. 175, 25–31 (2006).

    Article  CAS  Google Scholar 

  24. Moores, C.A. et al. The role of the kinesin-13 neck in microtubule depolymerization. Cell Cycle 5, 1812–1815 (2006).

    Article  CAS  Google Scholar 

  25. Cheeseman, I.M., Chappie, J.S., Wilson-Kubalek, E.M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  Google Scholar 

  26. Wei, R.R., Al-Bassam, J. & Harrison, S.C. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat. Struct. Mol. Biol. 14, 54–59 (2007).

    Article  CAS  Google Scholar 

  27. Cheng, Y. et al. Single particle reconstructions of the transferrin-transferrin receptor complex obtained with different specimen preparation techniques. J. Mol. Biol. 355, 1048–1065 (2006).

    Article  CAS  Google Scholar 

  28. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).

    Article  CAS  Google Scholar 

  29. Penczek, P.A., Grassucci, R.A. & Frank, J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53, 251–270 (1994).

    Article  CAS  Google Scholar 

  30. Schroeter, J.P. & Bretaudiere, J.P. SUPRIM: easily modified image processing software. J. Struct. Biol. 116, 131–137 (1996).

    Article  CAS  Google Scholar 

  31. Wang, H.W. & Nogales, E. An iterative Fourier-Bessel algorithm for reconstruction of helical structures with severe Bessel overlap. J. Struct. Biol. 149, 65–78 (2005).

    Article  CAS  Google Scholar 

  32. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  33. Goddard, T.D., Huang, C.C. & Ferrin, T.E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. DeRosier for invaluable help with helical reconstruction of the assembled Dam1 complex and comments on the manuscript, J. Kuriyan and M. Lamers for help in performing the light-scattering experiments, E. Zelenova for help in preparing the helical crystal of Dam1 with microtubules, and J. Fang for Dam1 complex purification. This work was supported by grants from the National Institute of General Medical Sciences of the US National Institutes of Health (G.B. and E.N), from the Office of Biological and Environmental Research of the US Department of Energy (E.N.) and from Philip Morris USA of Philip Morris International (D.G.D.); by a postdoctoral fellowship of the Deutsche Forschungsgemeinschaft (S.W.); and by a predoctoral training grant from the US National Institutes of Health (V.H.R.). E.N. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Contributions

H.-W.W., S.W., D.G.D., G.B. and E.N. designed the research. H.-W.W. performed the electron microscopy and the helical reconstruction of the helical Dam1-microtubule assemblies. H.-W.W. and J.P.I.W. determined the handedness of the helical assembly. V.H.R. and A.E.L. performed the single-particle analysis of free Dam1 complexes in solution. S.W. prepared and purified the wild-type and mutant complexes. Y.N. built the GFP-labeled Dam1 construct and J.P.I.W. purified it. D.G.D. and G.B. supervised the biochemical experiments. E.N. supervised the electron microscopy and data analysis. H.-W.W., V.H.R. and E.N. performed the model docking and prepared the manuscript. All authors contributed to scientific discussions.

Corresponding author

Correspondence to Eva Nogales.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1 and Supplementary Methods (PDF 1585 kb)

Supplementary Video 1

Two monomers fit back in the dimer reconstruction of wild-type Dam1. The colors are coded the same as in Figure 2b. (MOV 2335 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HW., Ramey, V., Westermann, S. et al. Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms. Nat Struct Mol Biol 14, 721–726 (2007). https://doi.org/10.1038/nsmb1274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing