Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis

Abstract

Primases synthesize the RNA primers that are necessary for replication of the parental DNA strands. Here we report that the heterodimeric archaeal/eukaryotic primase is an iron-sulfur (Fe-S) protein. Binding of the Fe-S cluster is mediated by an evolutionarily conserved domain at the C terminus of the large subunit. We further show that the Fe-S domain is essential to the unique ability of the eukaryotic primase to start DNA replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The archaeal/eukaryotic primase is a Fe-S protein.
Figure 2: Functional analysis of the S. cerevisiae primase.

Similar content being viewed by others

References

  1. Kornberg, A. & Baker, T.A. DNA Replication 2nd edn. (W.H. Freeman and Company, New York, 1992).

    Google Scholar 

  2. Frick, D.N. & Richardson, C.C. Annu. Rev. Biochem. 70, 39–80 (2001).

    Article  CAS  Google Scholar 

  3. Foiani, M., Santocanale, C., Plevani, P. & Lucchini, G. Mol. Cell. Biol. 9, 3081–3087 (1989).

    Article  CAS  Google Scholar 

  4. Foiani, M., Lindner, A.J., Hartmann, G.R., Lucchini, G. & Plevani, P. J. Biol. Chem. 264, 2189–2194 (1989).

    CAS  PubMed  Google Scholar 

  5. Copeland, W.C. Protein Expr. Purif. 9, 1–9 (1997).

    Article  CAS  Google Scholar 

  6. Schneider, A. et al. J. Biol. Chem. 273, 21608–21615 (1998).

    Article  CAS  Google Scholar 

  7. Arezi, B., Kirk, B.W., Copeland, W.C. & Kuchta, R.D. Biochemistry 38, 12899–12907 (1999).

    Article  CAS  Google Scholar 

  8. Zerbe, L.K. & Kuchta, R.D. Biochemistry 41, 4891–4900 (2002).

    Article  CAS  Google Scholar 

  9. Copeland, W.C. & Wang, T.S. J. Biol. Chem. 268, 26179–26189 (1993).

    CAS  PubMed  Google Scholar 

  10. Matsui, E. et al. Biochemistry 42, 14968–14976 (2003).

    Article  CAS  Google Scholar 

  11. Liu, L. et al. J. Biol. Chem. 276, 45484–45490 (2001).

    Article  CAS  Google Scholar 

  12. Lao-Sirieix, S.H., Nookala, R.K., Roversi, P., Bell, S.D. & Pellegrini, L. Nat. Struct. Mol. Biol. 12, 1137–1144 (2005).

    Article  CAS  Google Scholar 

  13. Conaway, R.C. & Lehman, I.R. Proc. Natl. Acad. Sci. USA 79, 2523–2527 (1982).

    Article  CAS  Google Scholar 

  14. Tseng, B.Y. & Ahlem, C.N. J. Biol. Chem. 257, 7280–7283 (1982).

    CAS  PubMed  Google Scholar 

  15. Kaguni, L.S., Rossignol, J.M., Conaway, R.C. & Lehman, I.R. Proc. Natl. Acad. Sci. USA 80, 2221–2225 (1983).

    Article  CAS  Google Scholar 

  16. Singh, H. et al. J. Biol. Chem. 261, 8564–8569 (1986).

    CAS  PubMed  Google Scholar 

  17. Sheaff, R.J. & Kuchta, R.D. Biochemistry 32, 3027–3037 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Nookala and M. Lyst for early work on the S. solfataricus PriL-CTD, J. Crack (University of East Anglia) for advice on iron-sulfur biochemistry, J. Downs (University of Sussex) for the gift of yeast genomic DNA, I. Gomez-Morillo for help with the microPIXE analysis, S.C. Onuoha for help with the CD analysis, O. Zaid for critical reading of the manuscript and S.D. Bell for comments and advice. S.K. is funded by the Gates Cambridge Trust and the Medical Research Council. This work was supported by a Wellcome Trust Senior Fellowship in Basic Biomedical Sciences to L.P.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and L.P. conceived the project and designed the experiments; S.K. prepared the recombinant proteins and performed the biochemical experiments; J.H. performed the EPR analysis; J.D.M. first suggested that the chromophore in the PriL-CTD might be a Fe-S cluster and performed the CD analysis; T.K. assisted with the primase assays and S.K. and L.P. interpreted the data and wrote the paper.

Corresponding author

Correspondence to Luca Pellegrini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1 and 2, Supplementary Methods (PDF 6016 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinge, S., Hirst, J., Maman, J. et al. An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat Struct Mol Biol 14, 875–877 (2007). https://doi.org/10.1038/nsmb1288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing