Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics

Abstract

During erythroid differentiation, β-globin gene expression is regulated by the locus control region (LCR). The transcription factor NF-E2p18/MafK binds within this region and is essential for β-globin expression in murine erythroleukemia (MEL) cells. Here we use the isotope-coded affinity tag (ICAT) technique of quantitative mass spectrometry to compare proteins interacting with NF-E2p18/MafK during differentiation. Our results define MafK as a 'dual-function' molecule that shifts from a repressive to an activating mode during erythroid differentiation. The exchange of MafK dimerization partner from Bach1 to NF-E2p45 is a key step in the switch from the repressed to the active state. This shift is associated with changes in the interaction of MafK with co-repressors and co-activators. Thus, our results suggest that in addition to its role as a cis-acting activator of β-globin gene expression in differentiated erythroid cells, the LCR also promotes an active repression of β-globin transcription in committed cells before terminal differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Western blot analysis of MafK-associated proteins purified before and after MEL cell differentiation.
Figure 3: Gel-filtration analysis of MEL cell nuclear extracts before and after differentiation.
Figure 4: Analysis of the occupancy of the β-globin locus by MafK-interacting proteins during MEL cell differentiation.
Figure 5: The exchange of MafK-heterodimerization partner leads to the activation of transcription of the adult β-major globin (βmaj) gene during terminal erythroid differentiation in MEL cells.

Similar content being viewed by others

References

  1. Forrester, W.C. et al. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes Dev. 4, 1637–1649 (1990).

    Article  CAS  Google Scholar 

  2. Fraser, P. & Grosveld, F. Locus control regions, chromatin activation and transcription. Curr. Opin. Cell Biol. 10, 361–365 (1998).

    Article  CAS  Google Scholar 

  3. Epner, E. et al. The β-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse β-globin locus. Mol. Cell 2, 447–455 (1998).

    Article  CAS  Google Scholar 

  4. Reik, A. et al. The locus control region is necessary for gene expression in the human β-globin locus but not the maintenance of an open chromatin structure in erythroid cells. Mol. Cell. Biol. 18, 5992–6000 (1998).

    Article  CAS  Google Scholar 

  5. Bender, M.A., Bulger, M., Close, J. & Groudine, M. β-globin gene switching and DNase I sensitivity of the endogenous β-globin locus in mice do not require the locus control region. Mol. Cell 5, 387–393 (2000).

    Article  CAS  Google Scholar 

  6. Bulger, M. et al. A complex chromatin landscape revealed by patterns of nuclease sensitivity and histone modification within the mouse β-globin locus. Mol. Cell. Biol. 23, 5234–5244 (2003).

    Article  CAS  Google Scholar 

  7. Orkin, S.H. Transcription factors and hematopoietic development. J. Biol. Chem. 270, 4955–4958 (1995).

    Article  CAS  Google Scholar 

  8. Hardison, R. et al. Locus control regions of mammalian β-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights. Gene 205, 73–94 (1997).

    Article  CAS  Google Scholar 

  9. Armstrong, J.A. & Emerson, B.M. Transcription of chromatin: these are complex times. Curr. Opin. Genet. Dev. 8, 165–172 (1998).

    Article  CAS  Google Scholar 

  10. Levings, P.P. & Bungert, J. The human β-globin locus control region. Eur. J. Biochem. 269, 1589–1599 (2002).

    Article  CAS  Google Scholar 

  11. Liu, D. et al. Dissection of the enhancer activity of β-globin 5′ DNase I-hypersensitive site 2 in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 3899–3903 (1992).

    Article  CAS  Google Scholar 

  12. Ney, P.A., Sorrentino, B.P., McDonagh, K.T. & Nienhuis, A.W. Tandem AP-1-binding sites within the human β-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev. 4, 993–1006 (1990).

    Article  CAS  Google Scholar 

  13. Sorrentino, B.P., Ney, P.A. & Nienhuis, A.W. Localization and characterization of the DNase I-hypersensitive site II (HS II) enhancer. A critical regulatory element within the β-globin locus-activating region. Ann. NY Acad. Sci. 612, 141–151 (1990).

    Article  CAS  Google Scholar 

  14. Talbot, D., Philipsen, S., Fraser, P. & Grosveld, F. Detailed analysis of the site 3 region of the human β-globin dominant control region. EMBO J. 9, 2169–2177 (1990).

    Article  CAS  Google Scholar 

  15. Gong, Q.H., McDowell, J.C. & Dean, A. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5′ hypersensitive site 2 of the β-globin locus control region. Mol. Cell. Biol. 16, 6055–6064 (1996).

    Article  CAS  Google Scholar 

  16. Strauss, E.C., Andrews, N.C., Higgs, D.R. & Orkin, S.H. In vivo footprinting of the human α-globin locus upstream regulatory element by guanine and adenine ligation-mediated polymerase chain reaction. Mol. Cell. Biol. 12, 2135–2142 (1992).

    Article  CAS  Google Scholar 

  17. Moi, P. & Kan, Y.W. Synergistic enhancement of globin gene expression by activator protein-1-like proteins. Proc. Natl. Acad. Sci. USA 87, 9000–9004 (1990).

    Article  CAS  Google Scholar 

  18. Moon, A.M. & Ley, T.J. Functional properties of the β-globin locus control region in K562 erythroleukemia cells. Blood 77, 2272–2284 (1991).

    CAS  PubMed  Google Scholar 

  19. Mignotte, V., Wall, L., deBoer, E., Grosveld, F. & Romeo, P.H. Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. Nucleic Acids Res. 17, 37–54 (1989).

    Article  CAS  Google Scholar 

  20. Andrews, N.C., Erdjument-Bromage, H., Davidson, M.B., Tempst, P. & Orkin, S.H. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362, 722–728 (1993).

    Article  CAS  Google Scholar 

  21. Andrews, N.C. et al. The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene. Proc. Natl. Acad. Sci. USA 90, 11488–11492 (1993).

    Article  CAS  Google Scholar 

  22. Igarashi, K. et al. Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 367, 568–572 (1994).

    Article  CAS  Google Scholar 

  23. Andrews, N.C. The NF-E2 transcription factor. Int. J. Biochem. Cell Biol. 30, 429–432 (1998).

    Article  CAS  Google Scholar 

  24. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  25. Tao, W.A. & Aebersold, R. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr. Opin. Biotechnol. 14, 110–118 (2003).

    Article  CAS  Google Scholar 

  26. Ranish, J.A. et al. The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33, 349–355 (2003).

    Article  CAS  Google Scholar 

  27. Kotkow, K.J. & Orkin, S.H. Dependence of globin gene expression in mouse erythroleukemia cells on the NF-E2 heterodimer. Mol. Cell. Biol. 15, 4640–4647 (1995).

    Article  CAS  Google Scholar 

  28. Igarashi, K., Itoh, K., Hayashi, N., Nishizawa, M. & Yamamoto, M. Conditional expression of the ubiquitous transcription factor MafK induces erythroleukemia cell differentiation. Proc. Natl. Acad. Sci. USA 92, 7445–7449 (1995).

    Article  CAS  Google Scholar 

  29. Francastel, C., Poindessous-Jazat, V., Augery-Bourget, Y. & Robert-Lezenes, J. NF-E2p18/mafK is required in DMSO-induced differentiation of Friend erythroleukemia cells by enhancing NF-E2 activity. Leukemia 11, 273–280 (1997).

    Article  CAS  Google Scholar 

  30. Motohashi, H., Shavit, J.A., Igarashi, K., Yamamoto, M. & Engel, J.D. The world according to Maf. Nucleic Acids Res. 25, 2953–2959 (1997).

    Article  CAS  Google Scholar 

  31. Friend, C., Scher, W., Holland, J.G. & Sato, T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc. Natl. Acad. Sci. USA 68, 378–382 (1971).

    Article  CAS  Google Scholar 

  32. Tsiftsoglou, A.S. & Wong, W. Molecular and cellular mechanisms of leukemic hemopoietic cell differentiation: an analysis of the Friend system. Anticancer Res. 5, 81–99 (1985).

    CAS  PubMed  Google Scholar 

  33. Sawado, T., Igarashi, K. & Groudine, M. Activation of β-major globin gene transcription is associated with recruitment of NF-E2 to the β-globin LCR and gene promoter. Proc. Natl. Acad. Sci. USA 98, 10226–10231 (2001).

    Article  CAS  Google Scholar 

  34. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  35. Han, D.K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951 (2001).

    Article  CAS  Google Scholar 

  36. Eng, J.K., McCormack, A.L. & Yates, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in protein databases. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  37. Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  Google Scholar 

  38. Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  Google Scholar 

  39. Oyake, T. et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol. Cell. Biol. 16, 6083–6095 (1996).

    Article  CAS  Google Scholar 

  40. Sawado, T., Halow, J., Bender, M.A. & Groudine, M. The β-globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. Genes Dev. 17, 1009–1018 (2003).

    Article  CAS  Google Scholar 

  41. Leach, K.M. et al. Characterization of the human β-globin downstream promoter region. Nucleic Acids Res. 31, 1292–1301 (2003).

    Article  CAS  Google Scholar 

  42. Feng, Q. & Zhang, Y. The NuRD complex: linking histone modification to nucleosome remodeling. Curr. Top. Microbiol. Immunol. 274, 269–290 (2003).

    CAS  PubMed  Google Scholar 

  43. Knoepfler, P.S. & Eisenman, R.N. Sin meets NuRD and other tails of repression. Cell 99, 447–450 (1999).

    Article  CAS  Google Scholar 

  44. Olave, I.A., Reck-Peterson, S.L. & Crabtree, G.R. Nuclear actin and actin-related proteins in chromatin remodeling. Annu. Rev. Biochem. 71, 755–781 (2002).

    Article  CAS  Google Scholar 

  45. Armstrong, J.A., Bieker, J.J. & Emerson, B.M. A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95, 93–104 (1998).

    Article  CAS  Google Scholar 

  46. Chi, T.H. et al. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 418, 195–199 (2002).

    Article  CAS  Google Scholar 

  47. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  Google Scholar 

  48. Ryan, R.F. et al. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol. Cell. Biol. 19, 4366–4378 (1999).

    Article  CAS  Google Scholar 

  49. Lechner, M.S., Begg, G.E., Speicher, D.W. & Rauscher, F.J. 3rd. Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: direct chromoshadow domain-KAP-1 corepressor interaction is essential. Mol. Cell. Biol. 20, 6449–6465 (2000).

    Article  CAS  Google Scholar 

  50. Vassallo, M.F. & Tanese, N. Isoform-specific interaction of HP1 with human TAFII130. Proc. Natl. Acad. Sci. USA 99, 5919–5924 (2002).

    Article  CAS  Google Scholar 

  51. Kanemaki, M. et al. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J. Biol. Chem. 274, 22437–22444 (1999).

    Article  CAS  Google Scholar 

  52. Wood, M.A., McMahon, S.B. & Cole, M.D. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol. Cell 5, 321–330 (2000).

    Article  CAS  Google Scholar 

  53. Cheng, X., Reginato, M.J., Andrews, N.C. & Lazar, M.A. The transcriptional integrator CREB-binding protein mediates positive cross talk between nuclear hormone receptors and the hematopoietic bZip protein p45/NF-E2. Mol. Cell. Biol. 17, 1407–1416 (1997).

    Article  CAS  Google Scholar 

  54. Chen, C.J., Deng, Z., Kim, A.Y., Blobel, G.A. & Lieberman, P.M. Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol. Cell. Biol. 21, 476–487 (2001).

    Article  CAS  Google Scholar 

  55. Wadman, I.A. et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16, 3145–3157 (1997).

    Article  CAS  Google Scholar 

  56. Xu, Z., Huang, S., Chang, L.S., Agulnick, A.D. & Brandt, S.J. Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol. Cell. Biol. 23, 7585–7599 (2003).

    Article  CAS  Google Scholar 

  57. Ge, H., Si, Y. & Roeder, R.G. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J. 17, 6723–6729 (1998).

    Article  CAS  Google Scholar 

  58. Westermarck, J. et al. The DEXD/H-box RNA helicase RHII/Gu is a co-factor for c-Jun-activated transcription. EMBO J. 21, 451–460 (2002).

    Article  CAS  Google Scholar 

  59. Igarashi, K. et al. Multivalent DNA binding complex generated by small Maf and Bach1 as a possible biochemical basis for β-globin locus control region complex. J. Biol. Chem. 273, 11783–11790 (1998).

    Article  CAS  Google Scholar 

  60. Yoshida, C. et al. Long range interaction of cis-DNA elements mediated by architectural transcription factor Bach1. Genes Cells 4, 643–655 (1999).

    Article  CAS  Google Scholar 

  61. Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J.D. & Yamamoto, M. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294, 1–12 (2002).

    Article  CAS  Google Scholar 

  62. Johnson, K.D., Christensen, H.M., Zhao, B. & Bresnick, E.H. Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter. Mol. Cell 8, 465–471 (2001).

    Article  CAS  Google Scholar 

  63. Bulger, M., Sawado, T., Schubeler, D. & Groudine, M. ChIPs of the β-globin locus: unraveling gene regulation within an active domain. Curr. Opin. Genet. Dev. 12, 170–177 (2002).

    Article  CAS  Google Scholar 

  64. Hung, H.L., Kim, A.Y., Hong, W., Radowski, C. & Blobel, G.A. Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation. J. Biol. Chem. 276, 10715–10721 (2001).

    Article  CAS  Google Scholar 

  65. Benezra, R., Cantor, C.R. & Axel, R. Nucleosomes are phased along the mouse β-major globin gene in erythroid and nonerythroid cells. Cell 44, 697–704 (1986).

    Article  CAS  Google Scholar 

  66. Ogawa, K. et al. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J. 20, 2835–2843 (2001).

    Article  CAS  Google Scholar 

  67. Grandori, C., Cowley, S.M., James, L.P. & Eisenman, R.N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell. Dev. Biol. 16, 653–699 (2000).

    Article  CAS  Google Scholar 

  68. Khavari, P.A., Peterson, C.L., Tamkun, J.W., Mendel, D.B. & Crabtree, G.R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

    Article  CAS  Google Scholar 

  69. Nielsen, A.L. et al. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J. 18, 6385–6395 (1999).

    Article  CAS  Google Scholar 

  70. Griffin, T.J. et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1, 323–333 (2002).

    Article  CAS  Google Scholar 

  71. Soutoglou, E. & Talianidis, I. Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science 295, 1901–1904 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F.J. Dilworth and T. Sawado for helpful discussions, F.J. Dilworth for critically reading the manuscript, J. Eng and A. Nesvizhskii for help in the analysis of the mass spectrometry data, E. Soutoglou for helpful advice on the ChIP experiments, J. Sun for the generation of Bach1 antiserum, P. Chambon for the gift of the HP1γ antibody and V. Blank for the gift of the MafG antibody. M.B. is supported by a long-term fellowship from the Human Frontier Science Program Organization. This project has been funded in part with federal funds as part of the NHLBI Proteomics Initiative from the National Heart, Lung and Blood Institute, US National Institutes of Health (NIH), under contract no. N01-HV-28179 (R.A.), and with NIH grants DK44746 and HL57620 (M.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Groudine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, M., Ranish, J., Kummer, N. et al. Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nat Struct Mol Biol 11, 73–80 (2004). https://doi.org/10.1038/nsmb713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing