Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The PM2 virion has a novel organization with an internal membrane and pentameric receptor binding spikes

Abstract

Biological membranes are notoriously resistant to structural analysis. Excellent candidates to tackle this problem in situ are membrane-containing viruses where the membrane is constrained by an icosahedral capsid. Cryo-EM and image reconstruction of bacteriophage PM2 revealed a membrane bilayer following the internal surface of the capsid. The viral genome closely interacts with the inner leaflet. The capsid, at a resolution of 8.4 Å, reveals 200 trimeric capsomers with a pseudo T = 21 dextro organization. Pentameric receptor-binding spikes protrude from the surface. It is evident from the structure that the PM2 membrane has at least two important roles in the life cycle. First, it acts as a scaffold to nucleate capsid assembly. Second, after host recognition, it fuses with the host outer membrane to promote genome entry. The structure also sheds light on how the viral supercoiled circular double-stranded DNA genome might be packaged and released.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PM2 genome and virion proteins.
Figure 2: Cryo-electron microscopy of PM2.
Figure 3: Radial density profiles and resolution assessment.
Figure 4: The organization of the capsid.
Figure 5: Domain model for the pentameric P1 spike located at the vertices.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

References

  1. Grahn, A.M., Daugelavicvius, R. & Bamford, D.H. Sequential model of phage PRD1 DNA delivery: active involvement of the viral membrane. Mol. Microbiol. 46, 1199–1209 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Mindich, L. Reverse genetics of dsRNA bacteriophage φ6. Adv. Virus Res. 53, 341–353 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Bamford, D.H., Caldentey, J. & Bamford, J.K. Bacteriophage PRD1: a broad host range dsDNA tectivirus with an internal membrane. Adv. Virus Res. 45, 281–319 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Kivelä, H.M., Männistö, R.H., Kalkkinen, N. & Bamford, D.H. Purification and protein composition of PM2, the first lipid-containing bacterial virus to be isolated. Virology 262, 364–374 (1999).

    Article  PubMed  Google Scholar 

  5. Espejo, R.T. & Canelo, E.S. Properties of bacteriophage PM2: a lipid-containing bacterial virus. Virology 34, 738–747 (1968).

    Article  CAS  PubMed  Google Scholar 

  6. Franklin, R.M., Hinnen, R., Schäfer, R. & Tsukagoshi, N. Structure and assembly of lipid-containing viruses, with special reference to bacteriophage PM2 as one type of model system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 276, 63–80 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Männistö, R.H., Kivelä, H.M., Paulin, L., Bamford, D.H. & Bamford, J.K.H. The complete genome sequence of PM2, the first lipid-containing bacterial virus to be isolated. Virology 262, 355–363 (1999).

    Article  PubMed  Google Scholar 

  8. Kivelä, H.M., Kalkkinen, N. & Bamford, D.H. Bacteriophage PM2 has a protein capsid surrounding a spherical proteinaceous lipid core. J. Virol. 76, 8169–8178 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Männistö, R.H., Grahn, A.M., Bamford, D.H. & Bamford, J.K.H. Transcription of bacteriophage PM2 involves phage-encoded regulators of heterologous origin. J.Bacteriol. 185, 3278–3287 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tsukagoshi, N., Kania, M.N. & Franklin, R.M. Identification of acyl phosphatidylglycerol as a minor phospholipid of Pseudomonas BAL-31. Biochim. Biophys. Acta 450, 131–136 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Camerini-Otero, R.D. & Franklin, R.M. Structure and synthesis of a lipid-containing bacteriophage. XII. The fatty acids and lipid content of bacteriophage PM2. Virology 49, 385–393 (1972).

    Article  CAS  PubMed  Google Scholar 

  12. Brewer, G.J. Membrane-localized replication of bacteriophage PM2. Virology 84, 242–245 (1978).

    Article  CAS  PubMed  Google Scholar 

  13. Espejo, R.T., Canelo, E.S. & Sinsheimer, R.L. Replication of bacteriophage PM2 deoxyribonucleic acid: a closed circular double-stranded molecule. J. Mol. Biol. 56, 597–621 (1971).

    Article  CAS  PubMed  Google Scholar 

  14. Zimmer, S.G. & Millette, R.L. DNA-dependent RNA polymerase from Pseudomonas BAL-31. II. Transcription of the allomorphic forms of bacteriophage PM2 DNA. Biochemistry 14, 300–307 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Brewer, G.J. Control of membrane morphogenesis in bacteriophage. Int. Rev. Cytol. 68, 53–96 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Schäfer, R., Hinnen, R. & Franklin, R.M. Structure and synthesis of a lipid-containing bacteriophage. Properties of the structural proteins and distribution of the phospholipid. Eur. J. Biochem. 50, 15–27 (1974).

    Article  PubMed  Google Scholar 

  17. Baker, T.S., Olson, N.H. & Fuller, S.D. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63, 862–922 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, L.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Harrison, S.C., Caspar, D.L., Camerini-Otero, R.D. & Franklin, R.M. Lipid and protein arrangement in bacteriophage PM2. Nat. New Biol. 229, 197–201 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Harauz, G. & van Heel, M. Similarity measures between images. Exact filters for general geometry of 3D reconstructions. Optik 73, 146–156 (1986).

    Google Scholar 

  21. Wikoff, W.R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Belnap, D.M., Olson, N.H. & Baker, T.S. A method for establishing the handedness of biological macromolecules. J. Struct. Biol. 120, 44–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, W., Baker, M.L., Ludtke, S.J. & Chiu, W. Bridging the information gap: computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308, 1033–1044 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. San Martín, C. et al. Minor proteins, mobile arms and membrane-capsid interactions in the bacteriophage PRD1 capsid. Nat. Struct. Biol. 9, 756–763 (2002).

    Article  PubMed  Google Scholar 

  25. Mancini, E.J., Clarke, M., Gowen, B.E., Rutten, T. & Fuller, S.D. Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol. Cell 5, 255–266 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, W. et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Biol. 10, 907–912 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kelley, L.A., MacCallum, R.M. & Sternberg, M.J. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 499–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, L., Benson, S.D., Butcher, S.J., Bamford, D.H. & Burnett, R.M. The receptor-binding protein, P2 of PRD1, a virus targeting antibiotic-resistant bacteria, has a novel fold suggesting multiple functions. Structure 11, 309–322 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Kivelä, H.M., Daugelavicvius, R., Hankkio, R.H., Bamford, J.K.H. & Bamford, D.H. Penetration of membrane-containing dsDNA bacteriophage PM2 into Pseudoalteromonas hosts. J. Bacteriol. 186 (in the press).

  30. Tsukagoshi, N., Schäfer, R. & Franklin, R.M. Structure and synthesis of a lipid-containing bacteriophage. An endolysin activity associated with bacteriophage PM2. Eur. J. Biochem. 77, 585–588 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Earnshaw, W.C. & Casjens, S.R. DNA packaging by the double-stranded DNA bacteriophages. Cell 21, 319–331 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. Gordon-Shaag, A., Ben-Nun-Shaul, O., Roitman, V., Yosef, Y. & Oppenheim, A. Cellular transcription factor Sp1 recruits Simian virus 40 capsid proteins to the viral packaging signal, ses. J. Virol. 76, 5915–5924 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hayashi, M., Aoyama, A., Richardson, D.L. & Hayashi, M.N. Biology of the bacteriophage φX174. in The Bacteriophages, Vol. 2 (ed. Calendar, R.) 1–71 (Plenum Press, New York, 1988).

    Google Scholar 

  34. Smith, D.E. et al. The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Liddington, R.C. et al. Structure of simian virus 40 at 3.8-Å resolution. Nature 354, 278–284 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Stewart, P.L., Fuller, S.D. & Burnett, R.M. Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J. 12, 2589–2599 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rydman, P.S., Bamford, J.K.H. & Bamford, D.H. A minor capsid protein P30 is essential for bacteriophage PRD1 capsid assembly. J. Mol. Biol. 313, 785–795 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Grimes, J.M. et al. An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure 5, 885–893 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Schägger, H. & von Jagow, G. Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  PubMed  Google Scholar 

  40. Grigorieff, N. Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 Å in ice. J. Mol. Biol. 277, 1033–1046 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Kivioja, T., Ravantti, J., Verkhovsky, A., Ukkonen, E. & Bamford, D. Local average intensity-based method for identifying spherical particles in electron micrographs. J.Struct. Biol. 131, 126–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Heymann, J.B. Bsoft: image and molecular processing in electron microscopy. J.Struct. Biol. 133, 156–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Fuller, S.D., Butcher, S.J., Cheng, R.H. & Baker, T.S. Three-dimensional reconstruction of icosahedral particles—the uncommon line. J. Struct. Biol. 116, 48–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Baker, T.S. & Cheng, R.H. A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol. 116, 120–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Ji, Y., Marinescu, D.C., Zhang, W. & Baker, T.S. Orientation refinement of virus structures with unknown symmetry. in Proceedings of the 17th International Parallel & Distributed Processing Symposium. (IEEE Press, Nice, France, 2003).

    Google Scholar 

  47. Marinescu, D.C., Ji, Y. & Lynch, R.E. Space-time tradeoffs for parallel 3D reconstruction algorithms for atomic virus structure determination. Concurrency Computation: Pract. Exper. 13, 1083–1106 (2001).

    Article  Google Scholar 

  48. Huang, C.C., Couch, G.S., Pettersen, E.F. & Ferrin, T.E. Chimera: an extensible molecular modeling application constructed using standard components. Pacific Symposium on Biocomputing 1, 724 (1996).

    Google Scholar 

  49. Cheng, N. et al. Handedness of the herpes simplex virus capsid and procapsid. J.Virol. 76, 7855–7859 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chacon, P. & Wriggers, W. Multi-resolution contour-based fitting of macromolecular structures. J. Mol. Biol. 317, 375–384 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Laurinmäki for EM; L. Valmu of the Protein Chemistry core facility, Institute of Biotechnology, for MS analyses; R. Duda for the gift of HK97 proheads; D. Belnap, R. Burnett, J. Conway, S. Fuller, B. Heymann and Y. Ji for software and helpful discussions; Finnish IT Center for Science (CSC) for computer facilities. The work was funded by the National Graduate School in Informational and Structural Biology (J.T.H.), Helsinki Graduate School in Biotechnology and Molecular Biology (H.M.K.), the Academy of Finland Centre of Excellence Programme (2000–2005) (D.H.B.) and an Academy of Finland Research Fellowship (S.J.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J Butcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huiskonen, J., Kivelä, H., Bamford, D. et al. The PM2 virion has a novel organization with an internal membrane and pentameric receptor binding spikes. Nat Struct Mol Biol 11, 850–856 (2004). https://doi.org/10.1038/nsmb807

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb807

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing