Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection

Abstract

The POT1 (protection of telomeres 1) protein binds the single-stranded overhang at the ends of chromosomes in diverse eukaryotes. It is essential for chromosome end-protection in the fission yeast Schizosaccharomyces pombe, and it is involved in regulation of telomere length in human cells. Here, we report the crystal structure at a resolution of 1.73 Å of the N-terminal half of human POT1 (hPOT1) protein bound to a telomeric single-stranded DNA (ssDNA) decamer, TTAGGGTTAG, the minimum tight-binding sequence indicated by in vitro binding assays. The structure reveals that hPOT1 contains two oligonucleotide/ oligosaccharide-binding (OB) folds; the N-terminal OB fold binds the first six nucleotides, resembling the structure of the S. pombe Pot1pN–ssDNA complex, whereas the second OB fold binds and protects the 3′ end of the ssDNA. These results provide an atomic-resolution model for chromosome end-capping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the interaction of hPOT1 with telomeric ssDNA.
Figure 2: Structure of the hPOT1V2–ssDNA complex.
Figure 3: Protein-ssDNA and ssDNA-ssDNA interactions in the hPOT1V2–ssDNA complex.
Figure 4: Telomeric DNA end-binding by hPOT1.
Figure 5: Model showing how hPOT1 could coat the entire 3′-end single-stranded overhang of a chromosome and inhibit telomerase activity.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Blackburn, E.H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

  2. Cervantes, R.B. & Lundblad, V. Mechanisms of chromosome-end protection. Curr. Opin. Cell Biol. 14, 351–356 (2002).

    Article  CAS  Google Scholar 

  3. de Lange, T. Protection of mammalian telomeres. Oncogene 21, 532–540 (2002).

    Article  CAS  Google Scholar 

  4. Cech, T.R. Beginning to understand the end of the chromosome. Cell 116, 273–279 (2004).

    Article  CAS  Google Scholar 

  5. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  Google Scholar 

  6. Rudolph, K.L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  Google Scholar 

  7. Hahn, W.C. et al. Inhibition of telomerase limits the growth of human cancer cells. Nat. Med. 5, 1164–1170 (1999).

    Article  CAS  Google Scholar 

  8. Zhang, X., Mar, V., Zhou, W., Harrington, L. & Robinson, M.O. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev. 13, 2388–2399 (1999).

    Article  CAS  Google Scholar 

  9. Zakian, V.A. Telomeres: beginning to understand the end. Science 270, 1601–1607 (1995).

    Article  CAS  Google Scholar 

  10. Wellinger, R.J., Wolf, A.J. & Zakian, V.A. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 72, 51–60 (1993).

    Article  CAS  Google Scholar 

  11. Makarov, V.L., Hirose, Y. & Langmore, J.P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88, 657–666 (1997).

    Article  CAS  Google Scholar 

  12. Wright, W.E., Tesmer, V.M., Huffman, K.E., Levene, S.D. & Shay, J.W. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809 (1997).

  13. Baumann, P. & Cech, T.R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  Google Scholar 

  14. Gray, J.T., Celander, D.W., Price, C.M. & Cech, T.R. Cloning and expression of genes for the Oxytricha telomere-binding protein: specific subunit interactions in the telomeric complex. Cell 67, 807–814 (1991).

    Article  CAS  Google Scholar 

  15. Horvath, M.P., Schweiker, V.L., Bevilacqua, J.M., Ruggles, J.A. & Schultz, S.C. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95, 963–974 (1998).

    Article  CAS  Google Scholar 

  16. Chandra, A., Hughes, T.R., Nugent, C.I. & Lundblad, V. Cdc13 both positively and negatively regulates telomere replication. Genes Dev. 15, 404–414 (2001).

  17. Mitton-Fry, R.M., Anderson, E.M., Hughes, T.R., Lundblad, V. & Wuttke, D.S. Conserved structure for single-stranded telomeric DNA recognition. Science 296, 145–147 (2002).

    Article  CAS  Google Scholar 

  18. Baumann, P., Podell, E. & Cech, T.R. Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing. Mol. Cell. Biol. 22, 8079–8087 (2002).

    Article  CAS  Google Scholar 

  19. Evans, S.K. & Lundblad, V. Positive and negative regulation of telomerase access to the telomere. J. Cell Sci. 113, 3357–3364 (2000).

    CAS  PubMed  Google Scholar 

  20. Taggart, A.K., Teng, S.C. & Zakian, V.A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023–1026 (2002).

    Article  CAS  Google Scholar 

  21. Garvik, B., Carson, M. & Hartwell, L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15, 6128–6138 (1995).

    Article  CAS  Google Scholar 

  22. Lei, M., Baumann, P. & Cech, T.R. Cooperative binding of single-stranded telomeric DNA by the Pot1 protein of Schizosaccharomyces pombe. Biochemistry 41, 14560–14568 (2002).

    Article  CAS  Google Scholar 

  23. Loayza, D. & de Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

  24. Colgin, L.M., Baran, K., Baumann, P., Cech, T.R. & Reddel, R.R. Human POT1 facilitates telomere elongation by telomerase. Curr. Biol. 13, 942–946 (2003).

    Article  CAS  Google Scholar 

  25. Armbruster, B.N. et al. Rescue of an hTERT mutant defective in telomere elongation by fusion with hPot1. Mol. Cell. Biol. 24, 3552–3561 (2004).

    Article  CAS  Google Scholar 

  26. Wei, C. & Price, C.M. Cell cycle localization, dimerization, and binding domain architecture of the telomere protein cPot1. Mol. Cell. Biol. 24, 2091–2102 (2004).

    Article  CAS  Google Scholar 

  27. Loayza, D., Parsons, H., Donigian, J., Hoke, K. & de Lange, T. DNA binding features of human POT1: a nonamer 5′-TAGGGTTAG-3′ minimal binding site, sequence specificity, and internal binding to multimeric sites. J. Biol. Chem. 279, 13241–13248 (2004).

    Article  CAS  Google Scholar 

  28. Murzin, A.G. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 12, 861–867 (1993).

    Article  CAS  Google Scholar 

  29. Theobald, D.L., Mitton-Fry, R.M. & Wuttke, D.S. Nucleic acid recognition by OB-fold proteins. Annu. Rev. Biophys. Biomol. Struct. 32, 115–133 (2003).

    Article  CAS  Google Scholar 

  30. Bochkarev, A., Pfuetzner, R.A., Edwards, A.M. & Frappier, L. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385, 176–181 (1997).

    Article  CAS  Google Scholar 

  31. Raghunathan, S., Ricard, C.S., Lohman, T.M. & Waksman, G. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength X-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Proc. Natl. Acad. Sci. USA 94, 6652–6657 (1997).

    Article  CAS  Google Scholar 

  32. Lei, M., Podell, E.R., Baumann, P. & Cech, T.R. DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature 426, 198–203 (2003).

    Article  CAS  Google Scholar 

  33. Theobald, D.L. & Wuttke, D.S. Prediction of multiple tandem OB-fold domains in telomere end-binding proteins Pot1 and Cdc13. Structure 12, 1877–1879 (2004).

    Article  CAS  Google Scholar 

  34. Mitton-Fry, R.M., Anderson, E.M., Theobald, D.L., Glustrom, L.W. & Wuttke, D.S. Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J. Mol. Biol. 338, 241–255 (2004).

    Article  CAS  Google Scholar 

  35. Yang, H. et al. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 297, 1837–1848 (2002).

    Article  CAS  Google Scholar 

  36. Morin, G.B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529 (1989).

    Article  CAS  Google Scholar 

  37. Blasco, M.A., Funk, W., Villeponteau, B. & Greider, C.W. Functional characterization and developmental regulation of mouse telomerase RNA. Science 269, 1267–1270 (1995).

    Article  CAS  Google Scholar 

  38. Holm, L. & Sander, C. Database algorithm for generating protein backbone and side-chain co-ordinates from a Cα trace application to model building and detection of co-ordinate errors. J. Mol. Biol. 218, 183–194 (1991).

    Article  CAS  Google Scholar 

  39. Ding, J. et al. Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev. 13, 1102–1115 (1999).

    Article  CAS  Google Scholar 

  40. Lingner, J. & Cech, T.R. Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc. Natl. Acad. Sci. USA 93, 10712–10717 (1996).

    Article  CAS  Google Scholar 

  41. Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 6, 673–680 (2004).

    Article  CAS  Google Scholar 

  42. Ye, J.Z. et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 18, 1649–1654 (2004).

    Article  CAS  Google Scholar 

  43. Griffith, J.D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    Article  CAS  Google Scholar 

  44. Nikitina, T. & Woodcock, C.L. Closed chromatin loops at the ends of chromosomes. J. Cell Biol. 166, 161–165 (2004).

    Article  CAS  Google Scholar 

  45. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  46. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  47. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  48. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  49. Merritt, E.A. & Murphy, M.E.P. Raster 3D version 2.0, a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  50. Nicholls, A., Sharp, K.A. & Honig, B. A rapid finite difference algorithm, utilizing successive overrelaxation to solve Poisson Boltzmann equation. J. Comput. Chem. 270, 26184–26191 (1991).

    Google Scholar 

  51. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structure. J. Appl. Crystallogr. 24, 945–950 (1991).

    Article  CAS  Google Scholar 

  52. Chen, J.L., Blasco, M.A. & Greider, C.W. Secondary structure of vertebrate telomerase RNA. Cell 100, 503–514 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Chen and D. Theobald (University of Colorado-Boulder) for insightful discussions and C. Ralston and G. McDermett (Advanced Light Source) for help in data collection. We thank K. Christensen and the tissue culture core facility of the University of Colorado Cancer Center for virus amplification and protein expression. This work was supported in part by a grant from the US National Institutes of Health. M.L. is an Agouron/Paul Sigler research fellow of the Helen Hay Whitney Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R Cech.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Two versions of hPOT1 (V1 = full-length hPOT1, V2 = N-terminal DNA-binding region) have equivalent DNA-binding properties. (PDF 84 kb)

Supplementary Fig. 2

Adding a 5′ end nucleotide (C) rescues the ssDNA-binding activity of 9mer (TAGGGTTAG). (PDF 56 kb)

Supplementary Fig. 3

Extra 5′ end nucleotides do not interfere with the hPOT1-ssDNA interaction, whereas as extra 3′ end nucleotides weaken the interaction. (PDF 62 kb)

Supplementary Fig. 4

Protein-ssDNA interactions between G10 and its peripheral protein residues. (PDF 85 kb)

Supplementary Fig. 5

hPOT1 contains two OB folds. (PDF 429 kb)

Supplementary Fig. 6

Structure-based sequence alignment of the Pot1 proteins of several vertebrates (human, mouse, rat and chicken). (PDF 951 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, M., Podell, E. & Cech, T. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol 11, 1223–1229 (2004). https://doi.org/10.1038/nsmb867

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing