Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer

Abstract

Effective control of both cell survival and cell proliferation is critical to the prevention of oncogenesis and to successful cancer therapy. Using functional expression cloning, we have identified GAS5 (growth arrest-specific transcript 5) as critical to the control of mammalian apoptosis and cell population growth. GAS5 transcripts are subject to complex post-transcriptional processing and some, but not all, GAS5 transcripts sensitize mammalian cells to apoptosis inducers. We have found that, in some cell lines, GAS5 expression induces growth arrest and apoptosis independently of other stimuli. GAS5 transcript levels were significantly reduced in breast cancer samples relative to adjacent unaffected normal breast epithelial tissues. The GAS5 gene has no significant protein-coding potential but expression encodes small nucleolar RNAs (snoRNAs) in its introns. Taken together with the recent demonstration of tumor suppressor characteristics in the related snoRNA U50, our observations suggest that such snoRNAs form a novel family of genes controlling oncogenesis and sensitivity to therapy in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Berthon P, Cussenot O, Hopwood L, Le Duc A, Maitland NJ . (1995). Functional expression of SV40 in human prostatic epithelial and fibroblastic cells: differentiation pattern of non-tumorigenic cell lines. Int J Oncol 6: 333–343.

    CAS  PubMed  Google Scholar 

  • Bialik S, Kimchi A . (2006). The death-associated protein kinases: Structure, function and beyond. Ann Rev Biochem 75: 189–210.

    Article  CAS  PubMed  Google Scholar 

  • Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL et al. (2000). Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 97: 1754–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chirgwin JM, Przybyla AE, Macdonald RJ, Rutter WJ . (1979). Isolation of biologically-active ribonucleic-acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299.

    Article  CAS  PubMed  Google Scholar 

  • Coccia EM, Cicala C, Charlesworth A, Ciccarelli C, Rossi GB, Philipson L et al. (1992). Regulation and expression of a growth arrest-specific gene (Gas5) during growth, differentiation, and development. Mole Cell Biol 12: 3514–3521.

    Article  CAS  Google Scholar 

  • Danielsen M, Peterson DO, Stallcup MR . (1983). Immunological selection of variant mouse lymphoid-cells with altered glucocorticoid responsiveness. Mol Cell Biol 3: 1310–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A . (1995). Identification of a novel serine threonine kinase and a novel 15-Kd protein as potential mediators of the gamma-interferon-induced cell-death. Genes Dev 9: 15–30.

    Article  CAS  PubMed  Google Scholar 

  • Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W et al. (2008). SnoRNA U50 is a candidate tumor suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 17: 1031–1042.

    Article  CAS  PubMed  Google Scholar 

  • Fan SJ, Smith ML, Rivet DJ, Duba D, Zhan QM, Kohn KW et al. (1995). Disruption of P53 function sensitizes breast-cancer Mcf-7 cells to cisplatin and pentoxifylline. Cancer Res 55: 1649–1654.

    CAS  PubMed  Google Scholar 

  • Fleming JV, Hay SM, Harries DN, Rees WD . (1998). Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells. Biochem J 330: 573–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontanier-Razzaq N, Harries DN, Hay SM, Rees WD . (2002). Amino acid deficiency up-regulates specific mRNAs in murine embryonic cells. J Nutr 132: 2137–2142.

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Evan GI . (2002). A matter of life and death. Cancer Cell 1: 19–30.

    Article  CAS  PubMed  Google Scholar 

  • Hale AJ, Smith CA, Sutherland LC, Stoneman VEA, Longthorne VL, Culhane AC et al. (1996). Apoptosis: molecular regulation of cell death. Eur J Biochem 236: 1–26.

    Article  CAS  PubMed  Google Scholar 

  • Hengartner MO . (2000). The biochemistry of apoptosis. Nature 407: 770–776.

    Article  CAS  PubMed  Google Scholar 

  • Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM et al. (1983). LNCaP model of human prostatic carcinoma. Cancer Res 43: 1809–1818.

    CAS  PubMed  Google Scholar 

  • Inbal B, Cohen O, PolakCharcon S, Kopolovic J, Vadai E, Eisenbach L et al. (1997). DAP kinase links the control of apoptosis to metastasis. Nature 390: 180–184.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW . (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164.

    Article  CAS  PubMed  Google Scholar 

  • Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW . (1979). Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17: 16–23.

    CAS  PubMed  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR . (1972). Apoptosis—basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr JFR, Winterford CM, Harmon BV . (1994). Apoptosis—its significance in cancer and cancer-therapy. Cancer 73: 2013–2026.

    Article  CAS  PubMed  Google Scholar 

  • Kishore S, Stamm S . (2006). The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311: 230–232.

    Article  CAS  PubMed  Google Scholar 

  • Kiss T . (2002). Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109: 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Lacroix M, Leclercq G . (2004). Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83: 249–289.

    Article  CAS  PubMed  Google Scholar 

  • Lam M, Stallcup M, Distelhorst CW . (1997). Expression of a defective mouse mammary tumor virus envelope glycoprotein precursor which binds stably to GRP78 within the lumen of the endoplasmic reticulum is associated with decreased glucocorticoid-induced apoptosis in mouse lymphoma cells. Cell Death Differ 4: 283–288.

    Article  CAS  PubMed  Google Scholar 

  • Li F, Srinivasan A, Wang Y, Armstrong RC, Tomaselli KJ, Fritz LC . (1997). Cell-specific induction of apoptosis by microinjection of cytochrome c—Bcl-x(L) has activity independent of cytochrome c release. J Biol Chem 272: 30299–30305.

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Ruley HE, Jacks T, Housman DE . (1993). P53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967.

    Article  CAS  PubMed  Google Scholar 

  • MacKeigan JP, Collins TS, Ting JPY . (2000). MEK inhibition enhances paclitaxel-induced tumor apoptosis. J Biol Chem 275: 38953–38956.

    Article  CAS  PubMed  Google Scholar 

  • Maitland NJ, Macintosh CA, Hall J, Sharrard M, Quinn G, Lang S . (2001). In vitro models to study cellular differentiation and function in human prostate cancers. Radiat Res 155: 133–142.

    Article  CAS  PubMed  Google Scholar 

  • Matera AG, Terns RM, Terns MP . (2007). Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8: 209–220.

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS . (2005). The functional genomics of noncoding RNA. Science 309: 1527–1528.

    Article  CAS  PubMed  Google Scholar 

  • Morrison LE, Jewell SS, Usha L, Blondin BA, Rao RD, Tabesh B et al. (2007). Effects of ERBB2 amplicon size and genomic alterations of chromosomes 1, 3, and 10 on patient response to trastuzumab in metastatic breast cancer. Genes Chromosomes Cancer 46: 397–405.

    Article  CAS  PubMed  Google Scholar 

  • Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT . (2008). Growth arrest in human T-cells is controlled by growth arrest specific transcript 5 (GAS5), a non-coding RNA. J Cell Sci 121 (Part 7): 939–946.

    Article  CAS  PubMed  Google Scholar 

  • Mourtada-Maarabouni M, Keen J, Clark J, Cooper CS, Williams GT . (2006). Candidate tumor suppressor LUCA-15/RBM5/H37 modulates expression of apoptosis and cell cycle genes. Exp Cell Res 312: 1745–1752.

    Article  CAS  PubMed  Google Scholar 

  • Mourtada-Maarabouni M, Kirkham L, Farzaneh F, Williams GT . (2005). Functional expression cloning reveals a central role for the receptor for activated protein kinase C 1 (RACK1) in T cell apoptosis. J Leukoc Biol 78: 503–514.

    Article  CAS  PubMed  Google Scholar 

  • Mourtada-Maarabouni M, Kirkham L, Farzaneh F, Williams GT . (2004). Regulation of apoptosis by fau revealed by functional expression cloning and antisense expression. Oncogene 23: 9419–9426.

    Article  CAS  PubMed  Google Scholar 

  • Mourtada-Maarabouni M, Kirkham L, Jenkins B, Rayner J, Gonda TJ, Starr R et al. (2003a). Functional expression cloning reveals proapoptotic role for protein phosphatase 4. Cell Death Differ 10: 1016–1024.

    Article  CAS  PubMed  Google Scholar 

  • Mourtada-Maarabouni M, Sutherland LC, Meredith JM, Williams GT . (2003b). Simultaneous acceleration of the cell cycle and suppression of apoptosis by splice variant delta-6 of the candidate tumour suppressor LUCA-15/RBM5. Genes Cells 8: 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Mourtada-Maarabouni M, Sutherland LC, Williams GT . (2002). Candidate tumour suppressor LUCA-15 can regulate multiple apoptotic pathways. Apoptosis 7: 421–432.

    Article  CAS  PubMed  Google Scholar 

  • Muller AJ, Chatterjee S, Teresky A, Levine AJ . (1998). The gas5 gene is disrupted by a frameshift mutation within its longest open reading frame in several inbred mouse strains and maps to murine chromosome 1. Mamm Genome 9: 773–774.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Takahashi N, Kakegawa E, Yoshida K, Ito Y, Kayano H et al. (2008). The GAS5 (growth arrest specific transcript 5) gene fuses to BCL6 as a result of t(1;3)(q25;q27) in a patient with b-cell lymphoma. Cancer Genet Cytogenet 182: 144–149.

    Article  CAS  PubMed  Google Scholar 

  • Nupponen NN, Carpten JD . (2001). Prostate cancer susceptibility genes: many studies, many results, no answers. Cancer Metastasis Rev 20: 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Raho G, Barone V, Rossi D, Philipson L, Sorrentino V . (2000). The gas 5 gene shows four alternative splicing patterns without coding for a protein. Gene 256: 13–17.

    Article  CAS  PubMed  Google Scholar 

  • Rossini GP, Sgarbi N, Malaguti C . (2001). The toxic responses induced by okadaic acid involve processing of multiple caspase isoforms. Toxicon 39: 763–770.

    Article  CAS  PubMed  Google Scholar 

  • Sax JK, Fei PW, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS . (2002). BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4: 842–849.

    Article  CAS  PubMed  Google Scholar 

  • Schneider C, King RM, Philipson L . (1988). Genes specifically expressed at growth arrest of mammalian-cells. Cell 54: 787–793.

    Article  CAS  PubMed  Google Scholar 

  • Smale G, Sasse J . (1992). RNA isolation from cartilage using density gradient centrifugation in cesium trifluoroacetate—an RNA preparation technique effective in the presence of high proteoglycan content. Anal Biochem 203: 352–356.

    Article  CAS  PubMed  Google Scholar 

  • Smedley D, Sidhar S, Birdsall S, Bennett D, Herlyn M, Cooper C et al. (2000). Characterization of chromosome I abnormalities in malignant melanomas. Genes Chromosomes Cancer 28: 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Steitz JA . (1998). Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol 18: 6897–6909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sramkoski RM, Pretlow TG, Giaconia JM, Pretlow TP, Schwartz S, Sy MS et al. (1999). A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim 35: 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Stange DE, Radlwimmer B, Schubert F, Traub F, Pich A, Toedt G et al. (2006). High-resolution genomic profiling reveals association of chromosomal aberrations on 1q and 16p with histologic and genetic subgroups of invasive breast cancer. Clin Cancer Res 12: 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland LC, Edwards SE, Cable HC, Poirier GG, Miller BA, Cooper CS et al. (2000). LUCA-15-encoded sequence variants regulate CD95-mediated apoptosis. Oncogene 19: 3774–3781.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Satoh H, Moriyama M, Satoh K, Morishita Y, Yoshida S et al. (2000). Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human B-cell lymphoma. Genes Cells 5: 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Thomadaki H, Scorilas A . (2007). Breast cancer cells response to the antineoplastic agents cisplatin, carboplatin, and doxorubicin at the mRNA expression levels of distinct apoptosis-related genes, including the new member, BCL2L12. Ann N Y Acad Sci 1095: 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Ishii-Ohba H, Ukai H, Katsube T, Ogiu T . (2003). Radiation-induced deletions in the 5′ end region of Notch1 lead to the formation of truncated proteins and are involved in the development of mouse thymic lymphomas. Carcinogenesis 24: 1257–1268.

    Article  CAS  PubMed  Google Scholar 

  • Vaux DL, Cory S, Adams JM . (1988). Bcl-2 gene promotes hematopoietic-cell survival and cooperates with C-Myc to immortalize Pre-B-cells. Nature 335: 440–442.

    Article  CAS  PubMed  Google Scholar 

  • Vitali P, Cavaille J . (2005). Small ARN C/D and Prader–Willi syndrome. Med Sci (Paris) 21: 1017–1019.

    Article  Google Scholar 

  • Warri AM, Huovinen RL, Laine AM, Martikainen PM, Harkonen PL (1993). Apoptosis in toremifene-induced growth-inhibition of human breast cancer cells in vivo and in vitro. J Natl Cancer Inst 85: 1412–1418.

    Article  CAS  PubMed  Google Scholar 

  • Williams GT, Farzaneh F . (2004). The use of gene function to identify the rate-limiting steps controlling cell fate. Cancer Immunol Immunother 53: 160–165.

    Article  PubMed  Google Scholar 

  • Williams GT, Hughes JP, Stoneman V, Anderson CL, McCarthy NJ, Mourtada-Maarabouni M et al. (2006). Isolation of genes controlling apoptosis through their effects on cell survival—research article. Gene Ther Mol Biol 10B: 255–261.

    Google Scholar 

  • Williams GT, Smith CA . (1993). Molecular regulation of apoptosis—genetic-controls on cell-death. Cell 74: 777–779.

    Article  CAS  PubMed  Google Scholar 

  • Williams GT, Smith CA, Spooncer E, Dexter TM, Taylor DR . (1990). Hematopoietic colony stimulating factors promote cell-survival by suppressing apoptosis. Nature 343: 76–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Ria Kishen, Dr Helen Kalirai and Professor Philip Rudland of the Liverpool Cancer Tissue Bank Research Centre for breast cancer and normal breast epithelial RNA samples, Professor Norman Maitland for PNT2C2 and P4E6 cells, and the Wellcome Trust, Breast Cancer Campaign, Leukemia Research Fund and BBSRC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Mourtada-Maarabouni or G T Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mourtada-Maarabouni, M., Pickard, M., Hedge, V. et al. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28, 195–208 (2009). https://doi.org/10.1038/onc.2008.373

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.373

Keywords

This article is cited by

Search

Quick links