Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anchorage-independent cell growth signature identifies tumors with metastatic potential

Abstract

The oncogenic phenotype is complex, resulting from the accumulation of multiple somatic mutations that lead to the deregulation of growth regulatory and cell fate controlling activities and pathways. The ability to dissect this complexity, so as to reveal discrete aspects of the biology underlying the oncogenic phenotype, is critical to understanding the various mechanisms of disease as well as to reveal opportunities for novel therapeutic strategies. Previous work has characterized the process of anchorage-independent growth of cancer cells in vitro as a key aspect of the tumor phenotype, particularly with respect to metastatic potential. Nevertheless, it remains a major challenge to translate these cell biology findings into the context of human tumors. We previously used DNA microarray assays to develop expression signatures, which have the capacity to identify subtle distinctions in biological states and can be used to connect in vitro and in vivo states. Here we describe the development of a signature of anchorage-independent growth, show that the signature exhibits characteristics of deregulated mitochondrial function and then demonstrate that the signature identifies human tumors with the potential for metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bild A, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353–357.

    Article  CAS  Google Scholar 

  • Calvo S, Jain M, Xie X, Sheth SA, Chang B, Goldberger OA . (2006). Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet 38: 576–582.

    Article  CAS  Google Scholar 

  • Campbell PM, Der CJ . (2004). Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin Cancer Biol 14: 105–114.

    Article  CAS  Google Scholar 

  • Chang JT, Nevins JR . (2006). GATHER: a systems approach to interpreting genomic signatures. Bioinformatics 22: 2926–2933.

    Article  CAS  Google Scholar 

  • Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A et al. (2007). Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67: 1472–1486.

    Article  CAS  Google Scholar 

  • Cifone MA, Fidler IJ . (1980). Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc Natl Acad Sci USA 77: 1039–1043.

    Article  CAS  Google Scholar 

  • Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F . (2006). The c-Myc target gene network. Semin Cancer Biol 16: 253–264.

    Article  CAS  Google Scholar 

  • Eccles SA, Welch DR . (2007). Metastasis: recent discoveries and novel treatment strategies. Lancet 369: 1742–1757.

    Article  CAS  Google Scholar 

  • Edelman E, Porrello A, Guinney J, Balakumaran B, Bild A, Febbo PG et al. (2006). Analysis of sample set enrichment scores: assaying the enrichment of sets of genes for individual samples in genome-wide expression profiles. Bioinformatics 22: e108–116.

    Article  CAS  Google Scholar 

  • Funes JM, Quintero M, Henderson S, Martinez D, Qureshi U, Westwood C et al. (2007). Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc Natl Acad Sci USA 104: 6223–6228.

    Article  CAS  Google Scholar 

  • Giangrande P, Zhu W, Schlisio S, Sun XH, Mori S, Gaubatz S et al. (2004). Genes Dev 18: 2941–2951.

  • Guda C, Subramaniam S . (2005). pTARGET [corrected] a new method for predicting protein subcellular localization in eukaryotes. Bioinformatics 21: 3963–3969.

    Article  CAS  Google Scholar 

  • Guo W, Giancotti FG . (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5: 816–826.

    Article  CAS  Google Scholar 

  • Hackett AJ, Smith HS, Springer EL, Owens RB, Nelson-Rees WA, Riggs JL et al. (1977). Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. J Natl Cancer Inst 58: 1795–1806.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Johns ME, Mills SE . (1983). Cloning efficiency. A possible prognostic indicator in squamous cell carcinoma of the head and neck. Cancer 52: 1401–1404.

    Article  CAS  Google Scholar 

  • Johnson WE, Li C, Rabinovic A . (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8: 118–127.

    Article  Google Scholar 

  • Kang D, Hamasaki N . (2005). Ann NY Acad Sci 1042: 101–108.

  • Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O'Donnell KA et al. (2005). Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25: 6225–6234.

    Article  CAS  Google Scholar 

  • Lopez-Otin C, Matrisian LM . (2007). Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7: 800–808.

    Article  CAS  Google Scholar 

  • Mattox DE, Von Hoff DD . (1980). in vitro stem cell assay in head and neck squamous carcinoma. Am J Surg 140: 527–530.

    Article  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524.

    Article  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, Nuyten D et al. (2007). Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci USA 104: 6740–6745.

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Theriault RL, Price JE . (1999). Clin Exp Metastasis 17: 325–332.

  • Nevins JR, Potti A . (2007). Mining gene expression profiles: expression signatures as cancer phenotypes. Nat Rev Genet 8: 601–609.

    Article  CAS  Google Scholar 

  • Nicolson GL, Lembo TM, Welch DR . (1988). Growth of rat mammary adenocarcinoma cells in semisolid clonogenic medium not correlated with spontaneous metastatic behavior: heterogeneity in the metastatic, antigenic, enzymatic, and drug sensitivity properties of cells from different sized colonies. Cancer Res 48: 399–404.

    CAS  PubMed  Google Scholar 

  • Nomura Y, Tashiro H, Hisamatsu K . (1989). in vitro clonogenic growth and metastatic potential of human operable breast cancer. Cancer Res 49: 5288–5293.

    CAS  PubMed  Google Scholar 

  • Price JE . (1986). Clonogenicity and experimental metastatic potential of spontaneous mouse mammary neoplasms. J Natl Cancer Inst 77: 529–535.

    CAS  PubMed  Google Scholar 

  • Samuels Y, Ericson K . (2006). Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18: 77–82.

    Article  CAS  Google Scholar 

  • Scott MS, Thomas DY, Hallett MT . (2004). Predicting subcellular localization via protein motif co-occurrence. Genome Res 14: 1957–1966.

    Article  CAS  Google Scholar 

  • Shafie SM, Liotta LA . (1980). Formation of metastasis by human breast carcinoma cells (MCF-7) in nude mice. Cancer Lett 11: 81–87.

    Article  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gilletee MA et al. (2005). Proc Natl Acad Sci USA 102: 15545–15550.

  • Sutherland CM, Mather FJ, Carter RD, Cerise EJ, Krementz ET . (1983). Breast cancer as analyzed by the human tumor stem cell assay. Surgery 94: 370–375.

    CAS  PubMed  Google Scholar 

  • Telang S, Lane AN, Nelson KK, Arumugam S, Chesney J . (2007). The oncoprotein H-RasV12 increases mitochondrial metabolism. Mol Cancer 6: 77.

    Article  Google Scholar 

  • Thompson EW, Paik S, Brünner N, Sommers CL, Zugmaier G, Clarke R et al. (1992). Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150: 534–544.

    Article  CAS  Google Scholar 

  • Tong X, Zhao F, Thompson CB . (2009). The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev 19: 32–37.

    Article  CAS  Google Scholar 

  • van Slooten HJ, Bonsing BA, Hiller AJ, Colbern GT, van Dierendonck JH, Cornelisse CJ et al. (1995). Outgrowth of BT-474 human breast cancer cells in immune-deficient mice: a new in vivo model for hormone-dependent breast cancer. Br J Cancer 72: 22–30.

    Article  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW . (2004). Cancer genes and the pathways they control. Nat Med 10: 789–799.

    Article  CAS  Google Scholar 

  • Warburg O . (1956). On respiratory impairment in cancer cells. Science 124: 269–270.

    CAS  Google Scholar 

  • Weinberg RA . (2007). The biology of cancer. Garland Science: New York.

    Google Scholar 

  • Yin JJ, Mohammad KS, Kakonen SM, Harris S, Wu-Wong JR, Wessale JL et al. (2003). A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA 100: 10954–10959.

    Article  CAS  Google Scholar 

  • Zhang RD, Fidler IJ, Price JE . (1991). Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion Metastasis 11: 204–215.

    CAS  PubMed  Google Scholar 

  • Zu XL, Guppy M . (2004). Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313: 459–465.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs J-T Chi, T Hallstrom, L Kong, R Rempel, J Freedman, M Gatza, Dr B Balakumaran, H Dressman, Y Yokota, S Akiyama, T Inoue, M Oshimura, M Araki, H Saya, Aburatani, A Niida, K Araki, Y Taya and Y Ito for helpful discussions; A Bild, T Kitamura, M Eilers and H Hanafusa for providing materials; L Jakoi for help with experiments; and T Henry and K Culler for assistance with the preparation of the article. This work was supported by a grant (5U54CA-112952-05) from the NIH/NCI to JRN. SM was a research fellow of the Uehara Memorial Foundation and is a visiting scholar of Riken Genome Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Nevins.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, S., Chang, J., Andrechek, E. et al. Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene 28, 2796–2805 (2009). https://doi.org/10.1038/onc.2009.139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.139

Keywords

This article is cited by

Search

Quick links