Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2)

Abstract

An elevated proteasome activity contributes to tumorigenesis, particularly by providing cancer cells with antiapoptotic protection and efficient clearance from irregular proteins. Still, the underlying mechanisms are poorly known. In this study, we report that in colon cancer patients, higher proteasome activity was detected in tumoral tissue compared with surrounding normal tissue, and also that increased levels of proteasomal subunit proteins, such as S5a/PSMD4 and α-5/PSMA5, could be detected. Colon tumors showed higher nuclear levels of nuclear factor E2-related factor 2 (Nrf2), a transcription factor supposed to be involved in the control of proteasomal subunit protein expression. The induction or overexpression of Nrf2 led to stronger S5a and α-5 expression in the human colon cancer cell lines, Colo320 and Lovo, as well as in NCM460 colonocytes along with higher proteasome activity. The small interfering RNA (siRNA)-mediated Nrf2 knockdown decreased S5a and α-5 expression and reduced proteasome activity. Additionally, Nrf2-dependent S5a and α-5 expression conferred protection from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, an effect preceded by an increased nuclear factor (NF)-κB activation and higher expression of antiapoptotic NF-κB target genes. These findings point to an important role of Nrf2 in the gain of proteasome activity, thereby contributing to colorectal carcinogenesis. Nrf2 may therefore serve as a potential target in anticancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

LLVY-AMC:

N-succinyl-L-leucyl-L-leucyl-L-valyl-L-tyrosyl-7-amido-4-methylcumarin

Nrf2:

nuclear factor E2-related factor-2

tBHQ:

tert-butyl-hydroquinone

UPP:

ubiquitin–proteasome pathway

26S-Pr:

26S-proteasome

20S-CP:

20S catalytical particle

19S-RP:

19S regulatory particle

References

  • Adams J . (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5: 417–421.

    Article  CAS  PubMed  Google Scholar 

  • Almond JB, Cohen GM . (2003). The proteasome: a novel target for cancer chemotherapy. Leukemia 16: 433–443.

    Article  Google Scholar 

  • Arlt A, Kruse ML, Breitenbroich M, Gehrz A, Koc B, Minkenberg J et al. (2003). The early response gene IEX-1 attenuates NFêB activation in 293 cells, a possible counterregulatory process leading to enhanced cell death. Oncogene 22: 3343–3350.

    Article  CAS  PubMed  Google Scholar 

  • Arlt A, Minkenberg J, Kruse ML, Grohmann F, Fölsch UR, Schäfer H . (2007). Immediate early gene-X1 interferes with 26 S proteasome activity by attenuating expression of the 19 S proteasomal components S5a/Rpn10 and S1/Rpn2. Biochem J 402: 367–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumeister W, Walz J, Zühl F, Seemüller E . (1998). The proteasome: paradigm of a self-compartmentalizing protease. Cell 92: 367–380.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Madura K . (2005). Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 65: 5599–5606.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Hu XT, Shi QL, Zhang FB, He C . (2009). Knockdown of the novel proteasome subunit Adrm1 located on the 20q13 amplicon inhibits colorectal cancer cell migration, survival and tumorigenicity. Oncol Rep 21: 531–537.

    Article  CAS  PubMed  Google Scholar 

  • Cho HY, Reddy SP, Debiase A, Yamamoto M, Kleeberger SR . (2005). Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic Biol Med 38: 325–343.

    Article  CAS  PubMed  Google Scholar 

  • Conaway RC, Brower CS, Conaway JW . (2002). Emerging roles of ubiquitin in transcription regulation. Science 296: 1254–1258.

    Article  CAS  PubMed  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL . (1996). Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65: 801–847.

    Article  CAS  PubMed  Google Scholar 

  • Dahlmann B . (2007). Role of proteasomes in disease. BMC Biochem 8 (Suppl 1): S3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devoy A, Soane T, Welchman R, Mayer RJ . (2005). The ubiquitin-proteasome system and cancer. Essays Biochem 41: 187–203.

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt H, Fulda S, Schmid I, Hiscott J, Debatin KM, Jeremias I . (2003). TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene 22: 3842–3852.

    Article  CAS  PubMed  Google Scholar 

  • Elsasser S, Chandler-Militello D, Müller B, Hanna J, Finley D . (2004). Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279: 26817–26822.

    Article  CAS  PubMed  Google Scholar 

  • Glickman MH, Ciechanover A . (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2: 373–428.

    Article  Google Scholar 

  • Goldberg AL . (2007). Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35: 12–17.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AL . (2003). Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895–899.

    Article  CAS  PubMed  Google Scholar 

  • Goy A, Hart S, Pro B, McLaughlin P, Younes A, Dang N et al. (2003). Report of a phase II study of proteasome inhibitor bortezomib (VELCADE) in patients with relapsed or refractory indolent or aggressive lymphomas. Blood 102: 180a.

    Article  Google Scholar 

  • Gudmundsdottir K, Lord CJ, Ashworth A . (2007). The proteasome is involved in determining differential utilization of double-strand break repair pathways. Oncogene 26: 7601–7606.

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, McMahon M . (2009). NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34: 176–188.

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A . (1998). The ubiquitin system. Annu Rev Biochem 67: 425–479.

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Xu C, Shen G, Jain MR, Khor TO, Gopalkrishnan A et al. (2006). Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (-/-) mice. Cancer Lett 243: 170–192.

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Nguyen T, Pickett CB . (2002). Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277: 42769–42774.

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y et al. (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275: 16023–16029.

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13: 76–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M, Cao Y, Greten FR, Li ZW . (2002). NF-κB in cancer: From innocent bystander to major culprit. Nat Rev Cancer 2: 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Chen X, Lary JW, Cole JL, Walters KJ . (2007). Defining how ubiquitin receptors hHR23a and S5a bind polyubiquitin. J Mol Biol 369: 168–176.

    Article  CAS  PubMed  Google Scholar 

  • Kepa JK, Ross D . (2003). Differential expression of the antioxidant response element within the hNQO1 promoter in NSCLC versus SCLC. Biochem Biophys Res Commun 311: 446–453.

    Article  CAS  PubMed  Google Scholar 

  • Khor TO, Huang MT, Kwon KH, Chan JY, Reddy BS, Kong AN . (2006). Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res 66: 11580–11584.

    Article  CAS  PubMed  Google Scholar 

  • Kwak MK, Kensler TW . (2006). Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methylcholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway. Biochem Biophys Res Commun 345: 1350–1357.

    Article  CAS  PubMed  Google Scholar 

  • Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW . (2003). Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signalling pathway. Mol Cell Biol 23: 8786–8794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD . (2008). Dual roles of Nrf2 in cancer. Pharmacol Res 58: 262–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT et al. (2002). Multiple associated proteins regulate proteasome structure and function. Mol Cell 10: 495–507.

    Article  CAS  PubMed  Google Scholar 

  • Liu GH, Qu J, Shen X . (2008). NF-kappaB/p65 antagonizes Nrf2–ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 1783: 713–727.

    Article  CAS  PubMed  Google Scholar 

  • Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z et al. (2006). ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell 24: 39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • London MK, Keck BI, Ramos PC, Dohmen RJ . (2004). Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Lett 567: 259–264.

    Article  CAS  PubMed  Google Scholar 

  • Mani A, Gelmann EP . (2005). The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 23: 4776–4789.

    Article  CAS  PubMed  Google Scholar 

  • McBride WH, Iwamoto KS, Syljuasen R, Pervan M, Pajonk F . (2003). The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene 22: 5755–5773.

    Article  CAS  PubMed  Google Scholar 

  • Moyer MP, Manzano LA, Merriman RL, Stauffer JS, Tanzer LR . (1996). NCM460, a normal human colon mucosal epithelial cell line. in vitro Cell Dev Biol Anim 32: 315–317.

    Article  CAS  PubMed  Google Scholar 

  • Murata S, Yashiroda H, Tanaka K . (2009). Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10: 104–115.

    Article  CAS  PubMed  Google Scholar 

  • Nair S, Doh ST, Chan JY, Kong A-N, Cai L . (2008). Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and Carcinogenesis. Br J Cancer 99: 2070–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nioi P, Nguyen T . (2007). A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity. Biochem Biophys Res Commun 362: 816–821.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski RZ, Dees EC . (2003). The role of the ubiquitination-proteasome pathway in breast cancer: applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer. Breast Cancer Res 5: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Osburn WO, Karim B, Dolan PM, Liu G, Yamamoto M, Huso DL et al. (2007). Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer 121: 1883–1891.

    Article  CAS  PubMed  Google Scholar 

  • Osburn WO, Kensler TW . (2008). Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 659: 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Pitts TM, Morrow M, Kaufman SA, Tentler JJ, Eckhardt SG . (2009). Vorinostat and bortezomib exert synergistic antiproliferative and proapoptotic effects in colon cancer cell models. Mol Cancer Ther 8: 342–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren S, Smith MJ, Louro ID, McKie-Bell P, Bani MR, Wagner M et al. (2000). The p44S10 locus, encoding a subunit of the proteasome regulatory particle, is amplified during progression of cutaneous malignant melanoma. Oncogene 19: 1419–1427.

    Article  CAS  PubMed  Google Scholar 

  • Rho JH, Qin S, Wang JY, Roehrl MH . (2008). Proteomic expression analysis of surgical human colorectal cancer tissues: up-regulation of PSB7, PRDX1, and SRP9 and hypoxic adaptation in cancer. J Proteome Res 7: 2959–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidtke G, Kraft R, Kostka S, Henklein P, Frömmel C, Löwe J et al. (1996). Analysis of mammalian 20S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J 15: 6887–6898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert U, Antón LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR . (2000). Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404: 770–774.

    Article  CAS  PubMed  Google Scholar 

  • Sebens Müerköster S, Rausch AV, Isberner A, Minkenberg J, Blaszczuk E, Witt M et al. (2008). The apoptosis-inducing effect of gastrin on colorectal cancer cells relates to an increased IEX-1 expression mediating NF-kappa B inhibition. Oncogene 27: 1122–1134.

    Article  PubMed  Google Scholar 

  • Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M et al. (2008a). Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135: 1358–1368.

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K et al. (2008b). Cancer related mutations in Nrf2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci USA 105: 13568–13573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Misra V, Thimmulappa RK . (2006). Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. Plos Med 3: e420.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL . (2005). ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20: 687–698.

    Article  CAS  PubMed  Google Scholar 

  • Sobin LH, Wittekind CH, International Union Against Cancer (UICC). (2002). TNM Classification on Malignant Tumours, 6th edn. Wiley-Liss Publications: New York.

    Google Scholar 

  • Song MY, Kim EK, Moon WS, Park JW, Kim HJ, So HS et al. (2009). Sulforaphane protects against cytokine- and streptozotocin-induced β-cell damage by suppressing the NF-κB pathway. Toxicol Appl Pharmacol 235: 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Sun XM, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A, Cohen GM . (2004). Caspase activation inhibits proteasome function during apoptosis. Mol Cell 14: 81–93.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y . (2006). E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia 8: 645–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trauzold A, Wermann H, Arlt A, Schütze S, Schäfer H, Oestern S et al. (2001). CD95 and TRAIL receptor-mediated activation of protein kinase C and NF-kappaB contributes to apoptosis resistance in ductal pancreatic adenocarcinoma cells. Oncogene 20: 4258–4269.

    Article  CAS  PubMed  Google Scholar 

  • van Tijn P, Hol EM, van Leeuwen FW, Fischer DF . (2008). The neuronal ubiquitin-proteasome system: murine models and their neurological phenotype. Prog Neurobiol 85: 176–193.

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M et al. (2004). Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA 101: 2040–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CY, Cusack Jr JC, Liu R, Baldwin Jr AS . (1999). Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 5: 412–417.

    Article  PubMed  Google Scholar 

  • Wyke SM, Russell ST, Tisdale MJ . (2004). Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-kappaB activation. Br J Cancer 91: 1742–1750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Varshavsky A . (2001). RPN4 is a ligand, substrate, and transcriptional regulator of the 26 S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA 98: 3056–3061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Suzuki T, Kobayashi A, Wakabayashi J, Maher J, Motohashi H et al. (2008). Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol 28: 2758–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi JJ, Ehlers MD . (2007). Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev 59: 14–39.

    Article  CAS  PubMed  Google Scholar 

  • Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD . (2004). Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23: 2009–2015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Maike Großmann and Dagmar Leisner for technical support, and the German Research Society (DFG/SFB415-A13) and the German Cluster of Excellence ‘Inflammation at Interfaces’ for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Schäfer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arlt, A., Bauer, I., Schafmayer, C. et al. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene 28, 3983–3996 (2009). https://doi.org/10.1038/onc.2009.264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.264

Keywords

This article is cited by

Search

Quick links