Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Loss-of-function genetic screens as a tool to improve the diagnosis and treatment of cancer

Abstract

A major impediment to the effective treatment of cancer is the molecular heterogeneity of the disease, which is also reflected in an equally diverse pattern of clinical responses to therapy. Currently, only few drugs are available that can be used safely and effectively to treat cancer. To improve this situation, the development of novel and highly specific targets for therapy is of utmost importance. Possibly even more importantly, we need better tools to predict which patients will respond to specific therapies. Such drug response biomarkers will be instrumental to individualize the therapy of patients having seemingly similar cancers. In this study, we discuss how RNA interference-based genetic screens can be used to address these two pressing needs in the care for cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abbas-Terki T, Blanco-Bose W, Deglon N, Pralong W, Aebischer P . (2002). Lentiviral-mediated RNA interference. Hum Gene Ther 13: 2197–2201.

    CAS  PubMed  Google Scholar 

  • Aza-Blanc P, Cooper CL, Wagner K, Batalov S, Deveraux QL, Cooke MP . (2003). Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell 12: 627–637.

    CAS  PubMed  Google Scholar 

  • Baeg GH, Zhou R, Perrimon N . (2005). Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev 19: 1861–1870.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A et al. (2006). Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 26: 9377–9386.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428: 431–437.

    Article  CAS  PubMed  Google Scholar 

  • Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K et al. (2007). A functional genetic approach identifies the PI3 K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12: 395–402.

    CAS  PubMed  Google Scholar 

  • Bjorklund M, Taipale M, Varjosalo M, Saharinen J, Lahdenpera J, Taipale J . (2006). Identification of pathways regulating cell size and cell-cycle progression by RNAi. Nature 439: 1009–1013.

    PubMed  Google Scholar 

  • Bommi-Reddy A, Almeciga I, Sawyer J, Geisen C, Li W, Harlow E et al. (2008). Kinase requirements in human cells: III. Altered kinase requirements in VHL−/− cancer cells detected in a pilot synthetic lethal screen. Proc Natl Acad Sci USA 105: 16484–16489.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brummelkamp TR, Bernards R . (2003). New tools for functional mammalian cancer genetics. Nat Rev Cancer 3: 781–789.

    CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002a). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.

    CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002b). Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2: 243–247.

    CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Fabius AW, Mullenders J, Madiredjo M, Velds A, Kerkhoven RM et al. (2006). An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2: 202–206.

    CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Nijman SM, Dirac AM, Bernards R . (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424: 797–801.

    CAS  PubMed  Google Scholar 

  • Buchholz F, Kittler R, Slabicki M, Theis M . (2006). Enzymatically prepared RNAi libraries. Nat Methods 3: 696–700.

    CAS  PubMed  Google Scholar 

  • Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL et al. (1992). Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89: 4285–4289.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castanotto D, Rossi JJ . (2009). The promises and pitfalls of RNA-interference-based therapeutics. Nature 457: 426–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chabner BA, Roberts Jr TG . (2005). Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5: 65–72.

    CAS  PubMed  Google Scholar 

  • Cresta S, Sessa C, Catapano CV, Gallerani E, Passalacqua D, Rinaldi A et al. (2008). Phase I study of bortezomib with weekly paclitaxel in patients with advanced solid tumours. Eur J Cancer 44: 1829–1834.

    CAS  PubMed  Google Scholar 

  • DasGupta R, Kaykas A, Moon RT, Perrimon N . (2005). Functional genomic analysis of the Wnt-wingless signaling pathway. Science 308: 826–833.

    CAS  PubMed  Google Scholar 

  • de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D et al. (1982). A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300: 765–767.

    CAS  PubMed  Google Scholar 

  • Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2: 561–566.

    CAS  PubMed  Google Scholar 

  • EBCTCG (2005). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365: 1687–1717.

    Google Scholar 

  • Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK et al. (2006). Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3: 777–779.

    CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498.

    CAS  PubMed  Google Scholar 

  • Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I et al. (2008). CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455: 547–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fotheringham S, Epping MT, Stimson L, Khan O, Wood V, Pezzella F et al. (2009). Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell 15: 57–66.

    CAS  PubMed  Google Scholar 

  • Friedman A, Perrimon N . (2006). A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 444: 230–234.

    CAS  PubMed  Google Scholar 

  • Giroux V, Iovanna J, Dagorn JC . (2006). Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. Faseb J 20: 1982–1991.

    CAS  PubMed  Google Scholar 

  • Gobeil S, Zhu X, Doillon CJ, Green MR . (2008). A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes Dev 22: 2932–2940.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goff SP . (2008). Knockdown screens to knockout HIV-1. Cell 135: 417–420.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottesman MM, Fojo T, Bates SE . (2002). Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2: 48–58.

    CAS  PubMed  Google Scholar 

  • Grimm S . (2004). The art and design of genetic screens: mammalian culture cells. Nat Rev Genet 5: 179–189.

    CAS  PubMed  Google Scholar 

  • Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH . (1997). Integrating genetic approaches into the discovery of anticancer drugs. Science 278: 1064–1068.

    CAS  PubMed  Google Scholar 

  • Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ et al. (2008). Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135: 1311–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins AL, Groom CR . (2002). The druggable genome. Nat Rev Drug Discov 1: 727–730.

    CAS  PubMed  Google Scholar 

  • Huang S, Laoukili J, Epping MT, Koster J, Holzel M, Westerman BA et al. (2009). ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 15: 328–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iorns E, Lord CJ, Turner N, Ashworth A . (2007). Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6: 556–568.

    CAS  PubMed  Google Scholar 

  • Iorns E, Turner NC, Elliott R, Syed N, Garrone O, Gasco M et al. (2008). Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13: 91–104.

    CAS  PubMed  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M et al. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21: 635–637.

    CAS  PubMed  Google Scholar 

  • Jatoi A, Dakhil SR, Foster NR, Ma C, Rowland Jr KM, Moore Jr DF et al. (2008). Bortezomib, paclitaxel, and carboplatin as a first-line regimen for patients with metastatic esophageal, gastric, and gastroesophageal cancer: phase II results from the North Central Cancer Treatment Group (N044B). J Thorac Oncol 3: 516–520.

    PubMed  PubMed Central  Google Scholar 

  • Ji D, Deeds SL, Weinstein EJ . (2007). A screen of shRNAs targeting tumor suppressor genes to identify factors involved in A549 paclitaxel sensitivity. Oncol Rep 18: 1499–1505.

    CAS  PubMed  Google Scholar 

  • Jones TR, Carpenter AE, Lamprecht MR, Moffat J, Silver SJ, Grenier JK et al. (2009). Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci USA 106: 1826–1831.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaelin Jr WG . (2005). The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5: 689–698.

    CAS  PubMed  Google Scholar 

  • Kiger AA, Baum B, Jones S, Jones MR, Coulson A, Echeverri C et al. (2003). A functional genomic analysis of cell morphology using RNA interference. J Biol 2: 27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kittler R, Pelletier L, Heninger AK, Slabicki M, Theis M, Miroslaw L et al. (2007). Genome-scale RNAi profiling of cell division in human tissue culture cells. Nat Cell Biol 9: 1401–1412.

    CAS  PubMed  Google Scholar 

  • Kittler R, Putz G, Pelletier L, Poser I, Heninger AK, Drechsel D et al. (2004). An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432: 1036–1040.

    CAS  PubMed  Google Scholar 

  • Kolfschoten IG, van Leeuwen B, Berns K, Mullenders J, Beijersbergen RL, Bernards R et al. (2005). A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 121: 849–858.

    CAS  PubMed  Google Scholar 

  • Li L, Lin X, Khvorova A, Fesik SW, Shen Y . (2007). Defining the optimal parameters for hairpin-based knockdown constructs. RNA 13: 1765–1774.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS et al. (2004). Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116: 121–137.

    CAS  PubMed  Google Scholar 

  • Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X et al. (2008). Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA 105: 20380–20385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF et al. (2009a). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137: 835–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Solimini NL, Elledge SJ . (2009b). Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136: 823–837.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Mandrekar SJ, Alberts SR, Croghan GA, Jatoi A, Reid JM et al. (2007). A phase I and pharmacologic study of sequences of the proteasome inhibitor, bortezomib (PS-341, Velcade), in combination with paclitaxel and carboplatin in patients with advanced malignancies. Cancer Chemother Pharmacol 59: 207–215.

    CAS  PubMed  Google Scholar 

  • MacKeigan JP, Murphy LO, Blenis J . (2005). Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7: 591–600.

    CAS  PubMed  Google Scholar 

  • Michiels F, van Es H, van Rompaey L, Merchiers P, Francken B, Pittois K et al. (2002). Arrayed adenoviral expression libraries for functional screening. Nat Biotechnol 20: 1154–1157.

    CAS  PubMed  Google Scholar 

  • Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124: 1283–1298.

    CAS  PubMed  Google Scholar 

  • Moffat J, Sabatini DM . (2006). Building mammalian signalling pathways with RNAi screens. Nat Rev Mol Cell Biol 7: 177–187.

    CAS  PubMed  Google Scholar 

  • Mross K, Frost A, Steinbild S, Hedbom S, Rentschler J, Kaiser R et al. (2008). Phase I dose escalation and pharmacokinetic study of BI 2536, a novel Polo-like kinase 1 inhibitor, in patients with advanced solid tumors. J Clin Oncol 26: 5511–5517.

    CAS  PubMed  Google Scholar 

  • Mukherji M, Bell R, Supekova L, Wang Y, Orth AP, Batalov S et al. (2006). Genome-wide functional analysis of human cell-cycle regulators. Proc Natl Acad Sci USA 103: 14819–14824.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann B, Held M, Liebel U, Erfle H, Rogers P, Pepperkok R et al. (2006). High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 3: 385–390.

    CAS  PubMed  Google Scholar 

  • Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G et al. (2006). A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441: 106–110.

    CAS  PubMed  Google Scholar 

  • Oosterkamp HM, Neering H, Nijman SM, Dirac AM, Mooi WJ, Bernards R et al. (2006). An evaluation of the efficacy of topical application of salicylic acid for the treatment of familial cylindromatosis. Br J Dermatol 155: 182–185.

    CAS  PubMed  Google Scholar 

  • Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD . (2006). A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124: 1069–1081.

    CAS  PubMed  Google Scholar 

  • Pan X, Yuan DS, Xiang D, Wang X, Sookhai-Mahadeo S, Bader JS et al. (2004). A robust toolkit for functional profiling of the yeast genome. Mol Cell 16: 487–496.

    CAS  PubMed  Google Scholar 

  • Pepperkok R, Ellenberg J . (2006). High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol 7: 690–696.

    CAS  PubMed  Google Scholar 

  • Rines DR, Gomez-Ferreria MA, Zhou Y, DeJesus P, Grob S, Batalov S et al. (2008). Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells. Genome Biol 9: R44.

    PubMed  PubMed Central  Google Scholar 

  • Rines DR, Tu B, Miraglia L, Welch GL, Zhang J, Hull MV et al. (2006). High-content screening of functional genomic libraries. Methods Enzymol 414: 530–565.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Antona C, Ingelman-Sundberg M . (2006). Cytochrome P450 pharmacogenetics and cancer. Oncogene 25: 1679–1691.

    CAS  PubMed  Google Scholar 

  • Rottmann S, Wang Y, Nasoff M, Deveraux QL, Quon KC . (2005). A TRAIL receptor-dependent synthetic lethal relationship between MYC activation and GSK3beta/FBW7 loss of function. Proc Natl Acad Sci USA 102: 15195–15200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarthy AV, Morgan-Lappe SE, Zakula D, Vernetti L, Schurdak M, Packer JC et al. (2007). Survivin depletion preferentially reduces the survival of activated K-Ras-transformed cells. Mol Cancer Ther 6: 269–276.

    CAS  PubMed  Google Scholar 

  • Satoh T, Okamoto I, Miyazaki M, Morinaga R, Tsuya A, Hasegawa Y et al. (2009). Phase I study of YM155, a novel survivin suppressant, in patients with advanced solid tumors. Clin Cancer Res 15: 3872–3880.

    CAS  PubMed  Google Scholar 

  • Savage P, Stebbing J, Bower M, Crook T . (2009). Why does cytotoxic chemotherapy cure only some cancers? Nat Clin Pract Oncol 6: 43–52.

    CAS  PubMed  Google Scholar 

  • Sawyers C . (2004). Targeted cancer therapy. Nature 432: 294–297.

    CAS  PubMed  Google Scholar 

  • Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ et al. (2008). Cancer proliferation gene discovery through functional genomics. Science 319: 620–624.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137: 821–834.

    CAS  PubMed  Google Scholar 

  • Shaffer AL, Emre NC, Lamy L, Ngo VN, Wright G, Xiao W et al. (2008). IRF4 addiction in multiple myeloma. Nature 454: 226–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR et al. (2008). Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319: 617–620.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL et al. (2007). Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446: 876–881.

    CAS  PubMed  Google Scholar 

  • Swanton C, Marani M, Pardo O, Warne PH, Kelly G, Sahai E et al. (2007). Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11: 498–512.

    CAS  PubMed  Google Scholar 

  • Tang W, Dodge M, Gundapaneni D, Michnoff C, Roth M, Lum L . (2008). A genome-wide RNAi screen for Wnt/beta-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. Proc Natl Acad Sci USA 105: 9697–9702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N et al. (2001). Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364–2368.

    CAS  PubMed  Google Scholar 

  • Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R et al. (2008). A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. Embo J 27: 1368–1377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyner JW, Deininger MW, Loriaux MM, Chang BH, Gotlib JR, Willis SG et al. (2009). RNAi screen for rapid therapeutic target identification in leukemia patients. Proc Natl Acad Sci USA 106: 8695–8700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . (2008). Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132: 363–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Engels IH, Knee DA, Nasoff M, Deveraux QL, Quon KC . (2004). Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer Cell 5: 501–512.

    CAS  PubMed  Google Scholar 

  • Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B et al. (2005). A genetic screen for candidate tumor suppressors identifies REST. Cell 121: 837–848.

    CAS  PubMed  Google Scholar 

  • Wheeler DB, Carpenter AE, Sabatini DM . (2005). Cell microarrays and RNA interference chip away at gene function. Nat Genet 37 (Suppl): S25–S30.

    CAS  PubMed  Google Scholar 

  • Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M et al. (2007). Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446: 815–819.

    CAS  PubMed  Google Scholar 

  • Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B et al. (2008). An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135: 852–864.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Bernards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullenders, J., Bernards, R. Loss-of-function genetic screens as a tool to improve the diagnosis and treatment of cancer. Oncogene 28, 4409–4420 (2009). https://doi.org/10.1038/onc.2009.295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.295

Keywords

This article is cited by

Search

Quick links