Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways

Abstract

Cripto is a developmental oncoprotein that signals via mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Smad2/3 pathways. However, the molecular basis for Cripto coupling to these pathways during embryogenesis and tumorigenesis is not fully understood. In this regard, we recently demonstrated that Cripto forms a cell surface complex with the HSP70 family member glucose-regulated protein-78 (GRP78). Here, we provide novel functional evidence demonstrating that cell surface GRP78 is a necessary mediator of Cripto signaling in human tumor, mammary epithelial and embryonic stem cells. We show that targeted disruption of the cell surface Cripto/GRP78 complex using shRNAs or GRP78 immunoneutralization precludes Cripto activation of MAPK/PI3K pathways and modulation of activin-A, activin-B, Nodal and transforming growth factor-β1 signaling. We further demonstrate that blockade of Cripto binding to cell surface GRP78 prevents Cripto from increasing cellular proliferation, downregulating E-Cadherin, decreasing cell adhesion and promoting pro-proliferative responses to activin-A and Nodal. Thus, disrupting the Cripto/GRP78 binding interface blocks oncogenic Cripto signaling and may have important therapeutic value in the treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G et al. (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25: 803–816.

    Article  CAS  Google Scholar 

  • Adkins HB, Bianco C, Schiffer SG, Rayhorn P, Zafari M, Cheung AE et al. (2003). Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J Clin Invest 112: 575–587.

    Article  CAS  Google Scholar 

  • Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, Arap W et al. (2004). Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6: 275–284.

    Article  CAS  Google Scholar 

  • Bianco C, Adkins HB, Wechselberger C, Seno M, Normanno N, De Luca A et al. (2002). Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial cells. Mol Cell Biol 22: 2586–2597.

    Article  CAS  Google Scholar 

  • Bianco C, Kannan S, De Santis M, Seno M, Tang CK, Martinez-Lacaci I et al. (1999). Cripto-1 indirectly stimulates the tyrosine phosphorylation of erb B-4 through a novel receptor. J Biol Chem 274: 8624–8629.

    Article  CAS  Google Scholar 

  • Bianco C, Strizzi L, Rehman A, Normanno N, Wechselberger C, Sun Y et al. (2003). A Nodal- and ALK4-independent signaling pathway activated by Cripto-1 through Glypican-1 and c-Src. Cancer Res 63: 1192–1197.

    CAS  PubMed  Google Scholar 

  • Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA et al. (2005). Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 65: 4663–4672.

    Article  CAS  Google Scholar 

  • Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ et al. (2008). Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 68: 498–505.

    Article  CAS  Google Scholar 

  • Fu Y, Wey S, Wang M, Ye R, Liao CP, Roy-Burman P et al. (2008). Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc Natl Acad Sci USA 105: 19444–19449.

    Article  CAS  Google Scholar 

  • Gonzalez-Gronow M, Cuchacovich M, Llanos C, Urzua C, Gawdi G, Pizzo SV . (2006). Prostate cancer cell proliferation in vitro is modulated by antibodies against glucose-regulated protein 78 isolated from patient serum. Cancer Res 66: 11424–11431.

    Article  CAS  Google Scholar 

  • Gray PC, Greenwald J, Blount AL, Kunitake KS, Donaldson CJ, Choe S et al. (2000). Identification of a binding site on the type II activin receptor for activin and inhibin. J Biol Chem 275: 3206–3212.

    Article  CAS  Google Scholar 

  • Gray PC, Harrison CA, Vale W . (2003). Cripto forms a complex with activin and type II activin receptors and can block activin signaling. Proc Natl Acad Sci USA 100: 5193–5198.

    Article  CAS  Google Scholar 

  • Gray PC, Shani G, Aung K, Kelber J, Vale W . (2006). Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling. Mol Cell Biol 26: 9268–9278.

    Article  CAS  Google Scholar 

  • Harms PW, Chang C . (2003). Tomoregulin-1 (TMEFF1) inhibits nodal signaling through direct binding to the nodal coreceptor Cripto. Genes Dev 17: 2624–2629.

    Article  CAS  Google Scholar 

  • Harrison CA, Gray PC, Fischer WH, Donaldson C, Choe S, Vale W . (2004). An activin mutant with disrupted ALK4 binding blocks signaling via type II receptors. J Biol Chem 279: 28036–28044.

    Article  CAS  Google Scholar 

  • Jakobsen CG, Rasmussen N, Laenkholm AV, Ditzel HJ . (2007). Phage display derived human monoclonal antibodies isolated by binding to the surface of live primary breast cancer cells recognize GRP78. Cancer Res 67: 9507–9517.

    Article  CAS  Google Scholar 

  • Kannan S, De Santis M, Lohmeyer M, Riese II DJ, Smith GH, Hynes N et al. (1997). Cripto enhances the tyrosine phosphorylation of Shc and activates mitogen-activated protein kinase (MAPK) in mammary epithelial cells. J Biol Chem 272: 3330–3335.

    Article  CAS  Google Scholar 

  • Kelber JA, Shani G, Booker EC, Vale WW, Gray PC . (2008). Cripto is a noncompetitive activin antagonist that forms analogous signaling complexes with activin and nodal. J Biol Chem 283: 4490–4500.

    Article  CAS  Google Scholar 

  • Lee AS . (2007). GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67: 3496–3499.

    Article  CAS  Google Scholar 

  • Liu Y, Steiniger SC, Kim Y, Kaufmann GF, Felding-Habermann B, Janda KD . (2007). Mechanistic studies of a peptidic GRP78 ligand for cancer cell-specific drug delivery. Mol Pharm 4: 435–447.

    Article  CAS  Google Scholar 

  • Minchiotti G . (2005). Nodal-dependant Cripto signaling in ES cells: from stem cells to tumor biology. Oncogene 24: 5668–5675.

    Article  CAS  Google Scholar 

  • Misra UK, Deedwania R, Pizzo SV . (2006). Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 281: 13694–13707.

    Article  CAS  Google Scholar 

  • Misra UK, Gonzalez-Gronow M, Gawdi G, Wang F, Pizzo SV . (2004). A novel receptor function for the heat shock protein Grp78: silencing of Grp78 gene expression attenuates alpha2M*-induced signalling. Cell Signal 16: 929–938.

    Article  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  Google Scholar 

  • Philippova M, Ivanov D, Joshi MB, Kyriakakis E, Rupp K, Afonyushkin T et al. (2008). Identification of proteins associating with glycosylphosphatidylinositol- anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/BiP in T-cadherin-dependent cell survival. Mol Cell Biol 28: 4004–4017.

    Article  CAS  Google Scholar 

  • Postovit LM, Margaryan NV, Seftor EA, Kirschmann DA, Lipavsky A, Wheaton WW et al. (2008). Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad Sci USA 105: 4329–4334.

    Article  CAS  Google Scholar 

  • Rahimi RA, Leof EB . (2007). TGF-beta signaling: a tale of two responses. J Cell Biochem 102: 593–608.

    Article  CAS  Google Scholar 

  • Reissmann E, Jornvall H, Blokzijl A, Andersson O, Chang C, Minchiotti G et al. (2001). The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev 15: 2010–2022.

    Article  CAS  Google Scholar 

  • Shani G, Fischer WH, Justice NJ, Kelber JA, Vale W, Gray PC . (2008). GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth. Mol Cell Biol 28: 666–677.

    Article  CAS  Google Scholar 

  • Shen MM . (2007). Nodal signaling: developmental roles and regulation. Development 134: 1023–1034.

    Article  CAS  Google Scholar 

  • Shi Y, Massague J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  Google Scholar 

  • Shukla A, Ho Y, Liu X, Ryscavage A, Glick AB . (2008). Cripto-1 alters keratinocyte differentiation via blockade of transforming growth factor-beta1 signaling: role in skin carcinogenesis. Mol Cancer Res 6: 509–516.

    Article  CAS  Google Scholar 

  • Strizzi L, Bianco C, Normanno N, Salomon D . (2005). Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis. Oncogene 24: 5731–5741.

    Article  CAS  Google Scholar 

  • Strizzi L, Bianco C, Normanno N, Seno M, Wechselberger C, Wallace-Jones B et al. (2004). Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice. J Cell Physiol 201: 266–276.

    Article  CAS  Google Scholar 

  • Topczewska JM, Postovit LM, Margaryan NV, Sam A, Hess AR, Wheaton WW et al. (2006). Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12: 925–932.

    Article  CAS  Google Scholar 

  • Wechselberger C, Strizzi L, Kenney N, Hirota M, Sun Y, Ebert A et al. (2005). Human Cripto-1 overexpression in the mouse mammary gland results in the development of hyperplasia and adenocarcinoma. Oncogene 24: 4094–4105.

    Article  CAS  Google Scholar 

  • Xing PX, Hu XF, Pietersz GA, Hosick HL, McKenzie IF . (2004). Cripto: a novel target for antibody-based cancer immunotherapy. Cancer Res 64: 4018–4023.

    Article  CAS  Google Scholar 

  • Yan YT, Liu JJ, Luo Y, Chaosu E, Haltiwanger RS, Abate-Shen C et al. (2002). Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway. Mol Cell Biol 22: 4439–4449.

    Article  CAS  Google Scholar 

  • Yeo C, Whitman M . (2001). Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol Cell 7: 949–957.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NCI, National Institutes of Health, Grant R01CA107420, the Foundation for Medical research, Inc., and the Robert J Jr and Helen Kleberg Foundaton. A portion of this work was also supported by an NIH training grant T32 CA009370 (to ADP) and the G Harold and Leila Y Mathers Charitable Foundation (to JCIB). Wylie W Vale is a senior investigator of the Foundation for Medical Research, Inc. and is a cofounder, consultant, equity holder and member of the Board of Directors of Neurocrine Biosciences and Acceleron Pharma. We thank Dr Travis Berggren and Margaret Lutz of The Salk Institute Stem Cell Core for valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P C Gray.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelber, J., Panopoulos, A., Shani, G. et al. Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene 28, 2324–2336 (2009). https://doi.org/10.1038/onc.2009.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.97

Keywords

This article is cited by

Search

Quick links