Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

CNK1 is a novel Akt interaction partner that promotes cell proliferation through the Akt-FoxO signalling axis

Abstract

The scaffold proteins connector enhancer of KSR (CNK) participate in Raf-, Rho- and NF-κB-dependent signalling and promote cell differentiation and invasion. In this study, we demonstrate that CNK1 downregulation inhibits, whereas CNK1 overexpression stimulates the proliferation of breast cancer cells and human embryonic kidney cells, respectively. This stimulatory effect depends on a functional phosphatidylinositol-3 kinase (PI3K) pathway because treatment of cells with the PI3K inhibitor, LY294002, abrogates CNK1-induced proliferation. CNK1 interacts with the PI3K effector Akt and knockdown of CNK1 decreases Akt activity in breast cancer cells. CNK1 controls Akt-dependent phosphorylation and transcriptional activity of FoxO, which is a negative regulator of proliferation. Consistent with this, CNK1-induced cell proliferation is blocked by FoxO overexpression. Moreover, CNK1 regulates anchorage-independent proliferation and focus formation of breast cancer cells. CNK1 is predominantly localized at the plasma membrane of breast cancer cells, whereas in non-transformed mammary epithelial cells, CNK1 is cytoplasmatic. Accordingly, CNK1 is found preferentially at the plasma membrane in carcinoma in situ and invasive breast cancer tumours compared with normal breast tissue sections. Analysis of multiple breast cancer samples reveals that CNK1-negative tumours show less Akt activity. Thus, CNK1 promotes oncogenic signalling through Akt in breast cancer cell lines and tumours.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al. (1996). Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15: 6541–6551.

    CAS  Google Scholar 

  • Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M et al. (1997). Role of translocation in the activation and function of protein kinase B. J Biol Chem 272: 31515–31524.

    Article  CAS  Google Scholar 

  • Baldwin AS . (2001). Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107: 241–246.

    Article  CAS  Google Scholar 

  • Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE et al. (2005). Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385: 399–408.

    Article  CAS  Google Scholar 

  • Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D et al. (1998). Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17: 313–325.

    Article  CAS  Google Scholar 

  • Bumeister R, Rosse C, Anselmo A, Camonis J, White MA . (2004). CNK2 couples NGF signal propagation to multiple regulatory cascades driving cell differentiation. Curr Biol 14: 439–445.

    Article  CAS  Google Scholar 

  • Calnan DR, Brunet A . (2008). The FoxO code. Oncogene 27: 2276–2288.

    Article  CAS  Google Scholar 

  • Claperon A, Therrien M . (2007). KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene 26: 3143–3158.

    Article  CAS  Google Scholar 

  • Dhillon AS, Hagan S, Rath O, Kolch W . (2007). MAP kinase signalling pathways in cancer. Oncogene 26: 3279–3290.

    Article  CAS  Google Scholar 

  • Douziech M, Roy F, Laberge G, Lefrancois M, Armengod AV, Therrien M . (2003). Bimodal regulation of RAF by CNK in Drosophila. EMBO J 22: 5068–5078.

    Article  CAS  Google Scholar 

  • Fritz RD, Radziwill G . (2005). The scaffold protein CNK1 interacts with the angiotensin II type 2 receptor. Biochem Biophys Res Commun 338: 1906–1912.

    Article  CAS  Google Scholar 

  • Fritz RD, Radziwill G . (2010). CNK1 promotes invasion of cancer cells through NF-κB-dependent signaling. Mol Cancer Res 8: 395–406.

    Article  CAS  Google Scholar 

  • Fritzius T, Moelling K . (2008). Akt- and Foxo1-interacting WD-repeat-FYVE protein promotes adipogenesis. EMBO J 27: 1399–1410.

    Article  CAS  Google Scholar 

  • Huang H, Tindall DJ . (2007). Dynamic FoxO transcription factors. J Cell Sci 120: 2479–2487.

    Article  CAS  Google Scholar 

  • Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY et al. (2006). SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127: 125–137.

    Article  CAS  Google Scholar 

  • Jaffe AB, Aspenstrom P, Hall A . (2004). Human CNK1 acts as a scaffold protein, linking Rho and Ras signal transduction pathways. Mol Cell Biol 24: 1736–1746.

    Article  CAS  Google Scholar 

  • Jaffe AB, Hall A, Schmidt A . (2005). Association of CNK1 with Rho guanine nucleotide exchange factors controls signaling specificity downstream of Rho. Curr Biol 15: 405–412.

    Article  CAS  Google Scholar 

  • Karin M, Cao Y, Greten FR, Li ZW . (2002). NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2: 301–310.

    Article  CAS  Google Scholar 

  • Kasper G, Reule M, Tschirschmann M, Dankert N, Stout-Weider K, Lauster R et al. (2007). Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway. BMC Cancer 7: 12.

    Article  Google Scholar 

  • Laberge G, Douziech M, Therrien M . (2005). Src42 binding activity regulates Drosophila RAF by a novel CNK-dependent derepression mechanism. EMBO J 24: 487–498.

    Article  CAS  Google Scholar 

  • Lanigan TM, Liu A, Huang YZ, Mei L, Margolis B, Guan KL . (2003). Human homologue of Drosophila CNK interacts with Ras effector proteins Raf and Rlf. FASEB J 17: 2048–2060.

    Article  CAS  Google Scholar 

  • Lopez-Ilasaca MA, Bernabe-Ortiz JC, Na SY, Dzau VJ, Xavier RJ . (2005). Bioluminescence resonance energy transfer identify scaffold protein CNK1 interactions in intact cells. FEBS Lett 579: 648–654.

    Article  CAS  Google Scholar 

  • Manning BD, Cantley LC . (2007). AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274.

    Article  CAS  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151–162.

    Article  CAS  Google Scholar 

  • Rabizadeh S, Xavier RJ, Ishiguro K, Bernabeortiz J, Lopez-Ilasaca M, Khokhlatchev A et al. (2004). The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death. J Biol Chem 279: 29247–29254.

    Article  CAS  Google Scholar 

  • Rocheleau CE, Ronnlund A, Tuck S, Sundaram MV . (2005). Caenorhabditis elegans CNK-1 promotes Raf activation but is not essential for Ras/Raf signaling. Proc Natl Acad Sci USA 102: 11757–11762.

    Article  CAS  Google Scholar 

  • Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al. (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25: 903–915.

    Article  CAS  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101.

    Article  CAS  Google Scholar 

  • Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J . (2002). Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 99: 13571–13576.

    Article  CAS  Google Scholar 

  • Therrien M, Wong AM, Rubin GM . (1998). CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 95: 343–353.

    Article  CAS  Google Scholar 

  • Theurillat JP, Zurrer-Hardi U, Varga Z, Storz M, Probst-Hensch NM, Seifert B et al. (2007). NY-BR-1 protein expression in breast carcinoma: a mammary gland differentiation antigen as target for cancer immunotherapy. Cancer Immunol Immunother 56: 1723–1731.

    Article  CAS  Google Scholar 

  • Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.

    Article  CAS  Google Scholar 

  • Ziogas A, Moelling K, Radziwill G . (2005). CNK1 is a scaffold protein that regulates Src-mediated Raf-1 activation. J Biol Chem 280: 24205–24211.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Thorsten Fritzius for providing the FoxO1 and Akt1 m/p expression constructs and Julia Fritz for help with fractionation experiments and critical reading of the paper. We are grateful to Dr Alexandra Trkola for providing the infrastructure. This work was supported by the Cancer League of Zurich and the Centre of Biological Signaling Studies (bioss).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Radziwill.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, R., Varga, Z. & Radziwill, G. CNK1 is a novel Akt interaction partner that promotes cell proliferation through the Akt-FoxO signalling axis. Oncogene 29, 3575–3582 (2010). https://doi.org/10.1038/onc.2010.104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.104

Keywords

This article is cited by

Search

Quick links